
Identifying Mechanisms of Apoptotic Pore 
Formation With Programmatic Ensemble Modeling

Citation
Bachman, John. 2016. Identifying Mechanisms of Apoptotic Pore Formation With Programmatic 
Ensemble Modeling. Doctoral dissertation, Harvard University, Graduate School of Arts & 
Sciences.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26718762

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:26718762
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Identifying%20Mechanisms%20of%20Apoptotic%20Pore%20Formation%20With%20Programmatic%20Ensemble%20Modeling&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=81e7b6b36b507617126e94b16aec1742&departmentSystems%20Biology
https://dash.harvard.edu/pages/accessibility


Identifying mechanisms of apoptotic pore
formation with programmatic ensemble

modeling

a dissertation presented

by

John Ata Bachman

to

The Committee on Higher Degrees in Systems Biology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of

Systems Biology

Harvard University
Cambridge, Massachusetts

December 2015



©2015 – John Ata Bachman
all rights reserved.



Thesis advisor: Professor Peter K. Sorger John Ata Bachman

Identifying mechanisms of apoptotic pore formation with
programmatic ensemble modeling

Abstract

Mitochondrial outer membrane permeabilization is a key step in the apoptotic cell death program,
regulating life-death decisions in response to cytotoxic drugs and other forms of cell stress. In this thesis I
use mathematical modeling of a reconstituted biochemical system to identify and integrate mechanisms
of apoptotic pore formation. A key bottleneck in usingmathematicalmodels to characterizemechanisms
has been the difficulty of efficiently creating and revising alternative models and evaluating them against
data. This problem is addressed through the use of a software framework, PySB, that allows ensem-
bles of models to be transparently described using tools and approaches from computer programming.
These alternative hypotheses can then be evaluated against data using methods from Bayesian statistics
for discrimination of models with varying numbers of (possibly non-identifiable) parameters. Using this
framework, calibration of a set of models to in vitro kinetic measurements of the membrane insertion
of Bax identifies a conformational intermediate associated with BH3-only:Bax complex formation and
membrane association but not pore formation. Functional measurements of Bax point mutants from
tumors show that the pore formation process can be blocked at the transition into or out of this in-
termediate, preventing mitochondrial permeabilization. In another study, model-based analysis of Bax
insertion and permeabilization kinetics across a range of BH3-only, Bax, and liposome concentrations re-
veals the context-dependence of the mechanisms regulating pore formation. Bax recruitment is shown
to depend on liposome concentration kinetically but not stoichiometrically, whereas cBid recruitment
is shown to be limited at high cBid:liposome concentrations. I show that Bax distribution among lipo-
somes is dependent on the presence of pre-existing pores, and that pores grow to include large numbers
of Baxmonomers but have aminimum size of four subunits. More generally, these studies serve as exam-
ples of how ensemble modeling can be used to integrate information about complex mechanisms from
disparate sets of experimental observations.
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The language used by biologists for verbal communica-
tions...is not unlike that used by stock market analysts.
Both are vague (e.g., “a balance between pro- and anti-
apoptotic Bcl-2 proteins appears to control the cell viability,
and seems to correlate in the long term with the ability to
form tumors”) and avoid clear predictions.

Yuri Lazebnik, “Can a Biologist Fix a Radio?”
(Lazebnik, 2002)

1
Introduction

Since the molecular biology revolution of the mid-20th century, biology has concerned itself largely with

the discovery of molecular mechanisms (Craver and Darden, 2013). And for good reason: in addition

to satisfying our fundamental curiosity about how biological systems work, mechanistic knowledge has

important practical benefits. Better understanding of molecular mechanisms can improve the efficiency

of drug discovery and help identify patients likely to benefit from particular therapies (Insel et al., 2015).

Mechanistic knowledge about drugs and their targets ismore transferable across disease contexts than em-

pirical observations from a single context; this has already been observed in cancer, where the use of drugs

targeted to specific genomic alterations has in some cases proven successful for cancers originating from

different tissues (Yan et al., 2014). Finally, a mechanistic rationale for therapy is satisfying for decision-

makers, giving increased confidence to physicians, patients and regulators alike (“Mechanism matters.”

2010).

The development of modern genetic and biochemical methods ushered in tremendous growth in

knowledge about biological mechanisms, culminating in a series of seemingly exhaustive studies of the
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identities of cellular components and their functions (Lander et al., 2001; Venter et al., 2001; Cancer

Genome Atlas Research Network et al., 2013; ENCODE Project Consortium, 2012). This knowledge

has not been limited to the identification of components: databases such as Pathway Commons enumer-

ate over a million molecular interactions, grouped into more than 30,000 pathways (Cerami et al., 2011).

And yet, despite this glut of information about biological mechanisms, it remains difficult to explain

deceptively simple empirical observations in mechanistic terms: for example, what makes one cell type

sensitive to an anti-cancer drug and another not? The problem is not that we have no answers to this

kind of question, but far too many possibilities—with the precise mechanism highly context-dependent

and usually difficult to discern a priori.

In his classic 2002 essay, “Can a Biologist Fix a Radio?—Or, what I learned while studying apopto-

sis,” Yuri Lazebnik described how a subfield of biology could paradoxically become more confusing as it

matured, rather than less:

At some point...the field reaches a stage at whichmodels, that seemed so complete, fall apart,
predictions that were considered so obvious are found to bewrong, and attempts to develop
wonder drugs largely fail. This stage is characterized by a sense of frustration at the complex-
ity of the process, and by a sinking feeling that despite all that intense digging the promised
cure-allmay notmaterialize. In otherwords, the field hits thewall, even though the intensity
of research remains unabated for a while, resulting in thousands of publications, many of
which are contradictory or largely descriptive....This stage can be summarized by the para-
dox that the more facts we learn the less we understand the process we study. (Lazebnik,
2002)

According to this view, what makes modern biology challenging is not that so much remains unknown,

but that we have a limited ability to integrate what we have already discovered.

In clinical applications, recent experience with targeted therapies in cancer provide a powerful demon-

stration of the tremendous potential of applying mechanistic knowledge to drug discovery—as well as

the limitations of current approaches. On the one hand, the BRAF-specific kinase inhibitor vemurafenib

has yielded remarkably dramatic clinical responses in melanoma patients with BRAF V600E mutant tu-

mors (Chapman et al., 2011). On the other hand, the drug has proved surprisingly ineffective in colorectal

cancers harboring the samemutation (Roth et al., 2010). This clinical findingwas later attributed to feed-
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back regulation by EGFR, a receptor that is highly expressed in colorectal carcinoma but not melanoma

cells (Prahallad et al., 2012).

In this and similar examples, the efficacy of a “magic bullet” drug aimed at a specific genetic alteration

was found to depend strongly on the cellular context. Indeed, context-dependence of this type is the rule

rather than the exception in biological systems, making robust mechanistic explanations and predictable

design difficult (Shrager, 2003; Banerji, 2013; Del Vecchio, 2015). Given that EGFR and BRAF are among

the most-studied genes in molecular biology, the appearance of unanticipated interactions among their

alterations reflects the challenge of integrating knowledge aboutmechanism into a predictive framework.

This example involves a single targeted drug; as the medical community turns its attention to the use of

combinations of multiple targeted agents, the need for a more robust framework for reasoning about

mechanisms will become all the more acute (Maione et al., 2006).

1.1 Mathematical models integrate knowledge about mechanisms

The need for a more integrated approach to understanding the behavior of biological systems was one

reason for the emergence of the field of systems biology, around the time of Lazebnik’s essay. From the be-

ginning, it was envisioned that this new field would have both experimental and theoretical components,

focusing on quantitative phenomena and explanations (Kirschner, 2005; Wingreen and Botstein, 2006;

Liu, 2005). Quantitative models, which already had a long and successful—if underappreciated—track

record in biology (Gunawardena, 2014), were seen as a key tool for reasoning about complex biological

systems (Sorger, 2005; Tyson, 2007).

Over the last decade, quantitative modeling has shown promise as a tool for explaining and predicting

the behavior of biological systems. Models have been used to explore a number of complex processes,

including the cell cycle of budding yeast (K. C. Chen et al., 2000), mammalian growth factor signaling

(W. W. Chen et al., 2009; Blinov et al., 2006), receptor-mediated apoptosis (Albeck et al., 2008a; Bentele

et al., 2004; Lindner et al., 2013), NF-κB signaling (Cheong et al., 2008), themicrobeM. genitalium (Karr

et al., 2012), and human metabolism (Thiele et al., 2013).

As it is generally practiced, modeling in systems biology involves enumerating a set of assumptions
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about a subset of cellular components and their interactions, drawn from the literature; model scope is

itself an assumption and remains largely a matter of intuition. Model assumptions are encoded into a

formal representation allowing inferences or predictions to bemade, which are then compared to data or

analyzed mathematically.

There are three principal difficulties arising from the current approach. First, by encoding assumptions

directly into a low-levelmodeling formalism (such as equations),models tend tomirror (or evenmagnify)

the complexity of the systems that they describe. As a model’s biological scope increases, its structure and

assumptions become increasingly obscure, making it difficult to reuse or extend. This is a primary barrier

to models becoming reusable community resources. Second, the use of a single model results in brittle

explanations, offering little insight into the connection between a model’s assumptions and its behavior.

The uniqueness of the model in explaining the data is unknown, and the model may be “right” (fit the

data) for the wrong reasons. Finally, model construction remains a highly laborious process, requiring

significant amounts of time and expertise (this point is revisited in Chapter 5).

As a consequence of these persistent difficulties with current modeling approaches, the particular

requirement Lazebnik identified—of a durable framework for integrating mechanistic explanations of

complex phenomena—remains unsatisfied. The need formore robust explanatory and predictive frame-

works is all themore apparent considering the growth in large, complex datasets (e.g., Vidović et al., 2014).

Even in this age of ’omics, explanations of complex biological phenomena tend to focus on cherry-picked

examples, are local to particular experiments and datasets, are only informally grounded in prior knowl-

edge of mechanisms, and as discussed above, are rarely robust across biological contexts.

1.2 Programmatic ensemble modeling

In this thesis I discuss an approach, programmatic ensemble modeling, to address these bottlenecks in

using models to interpret biological phenomena.

Programmatic modeling refers to the practice of using tools and approaches from computer software

to build models that are transparent, reusable, and extensible. Despite their complexity, biological mod-

els contain many repeated elements, such as low-level biophysical processes that are highly stereotyped
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(binding, post-translational modification, transport, assembly, etc.). The use of abstraction allows these

common elements to be represented by reusable functions, masking the low-level details and reducing

implementation errors. Models can be hierarchically decomposed into modules at varying scales, from

self-contained pathways to individual mechanistic elements that are common to many model variants

(Figure 1.1). This approach was explored in the LISP framework little b (Mallavarapu et al., 2009), and

extended in PySB, described in Chapter 2 (Lopez et al., 2013).

tBid:Bax >> tBid + aBax Bax + Bcl2 <> Bax:Bcl2

catalyze bind

tBid_activates_effectors sensitizers_bind_antiapoptotics antiapoptotics_bind_effectors

rec_to_bid indirect

Models
mechanistic hypotheses

Modules
self-contained pathways in a model

Motifs
small mechanistic elements

Rules
protein-protein interactions

Mathematical representation
equations

EARM 2.0-M2a EARM 2.0-M3a

direct

tBid + Bax <> tBid:Bax

x10x10x2

ODE Model X Rule Model YA B C

Macros
common biochemical processes

Figure 7

Figure 1.1: Programmatic modeling allows hierarchical decomposition of complex biological processes. (A)Alternativemodels can be

built by recombining reusable elements at multiple scales, termed “modules” (larger scale) or “motifs” (smaller scale). At the lowest

level, “macros” implement abstractions of common biochemical processes. (B) In conventional modeling practice, a model is encoded

directly in amathematical representation, masking themany intermediate assumptions. (Figure adapted fromChapter 2.)

Programmatic construction of models is essential for building and analyzing multiple model variants,

as it makes the mechanistic differences between alternative models explicit. For example, two models of

the extrinsic apoptosis pathway, EARM 2.0-M2a and EARM 2.0-M3a, share a common implementation

of the upstream reactions (rec_to_bid; Figure 1.1), but differ in the modules used to implement the

mitochondrial reactions (direct vs. indirect). The high-level differences between these twomodules

can then be seen immediately in terms of the different mechanistic motifs they contain. At each level of

the hierarchy, differences betweenmodel alternatives are captured in terms of a high-level vocabulary that

maps closely to the terms used by biologists.

Ensemble modeling involves formulating a collection of alternativemodels of a process and then evalu-

ating them against data. After model calibration (i.e., estimation of unknown parameters), models with

poor fit can be discarded using statistical techniques formodel discrimination; predictions of the remain-
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Models

M1

Data

M1

Optimized
experiments

Predictions

Refinement

fit

fit

fit

fit

fit

fit

fit

fit

fit

A

B

Figure 1.2: Single vs. ensemblemodeling. (A) In

conventional modeling practice, a single model

is formulated and fit to data, leading to iterative

refinements until a satisfactory fit is obtained. (B)

In ensemblemodeling, many candidatemodels are

defined a priori based on prior knowledge; these

models are then ranked or grouped based on their

fit to data. The ensemble of models can then be

expanded to incorporate new kinds of assumptions

or used for experimental design or prediction.

ingmodelswith good fit can be pooled as away ofmanaging the uncertainty aboutwhichmodel is correct

(Figure 1.2) (Burnham and Anderson, 2002).

Biology is a good candidate for multi-model analysis because biochemistry provides a solid theoretical

foundation for the mechanistic building blocks (Burnham and Anderson, 2002). Though not the pre-

dominant approach in systems biology, a number of previous studies have used discrimination among

model variants to refine hypotheses about biological mechanisms (Kleiman et al., 2011; Muzzey et al.,

2009; Albeck et al., 2008b). Ensemble modeling was first explicitly proposed as a modeling method for

biology by Stelling and colleagues, chiefly for its value inmanaging uncertainty about mechanisms in sig-

naling (Kuepfer et al., 2007). A tool for model enumeration from a single master model, modelMaGe,

has also been described (Schaber et al., 2011).

Ensemble modeling offers several advantages over the practice of building and refining single models

(Figure 1.2):

• Identifies when simple models are sufficient to fit the data. Inclusion of both simple and complex
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models in an ensemble highlightswhichmechanisms are primarily responsible for the experimental

observations, yielding insight into the key drivers of systembehavior. Conversely, evaluation of the

model ensemble across multiple datasets can also identify limitations on the scope of the simpler

models.

• Groups models having equivalent behaviors, allowing insight into mechanisms. Particular combi-

nations of mechanistic assumptions can lead to shared behaviors among models that may not a

priori be seen as similar. The process of model calibration and discrimination yields a classification

ofmodels into groups that succeed or fail in similarways, providing insight into the roles of specific

combinations of assumptions in driving model behavior.

• Highlights ambiguities in mechanistic explanations. It is commonly appreciated that models (both

qualitative and quantitative) offered as explanations of biological phenomena are not unique, in

that other explanations could prove equally valid. The model ensemble provides a quantitative

framework for assessing this type of ambiguity.

• Facilitates experimental design for model refinement. Asubset ofmodels that are equally valid given

existing experimental datamay be able to be discriminatedwith carefully chosen experiments. Pre-

dictions of the model ensemble under different experimental conditions can be used to design ex-

periments likely to result in clarification of model ambiguity.

• Manages uncertainty through ensemble predictions. Where model predictions, rather than model

structure, are of primary interest (e.g., in a precision medicine context), predictions from the en-

semble of validatedmodels can be pooled to account for uncertainty in the underlyingmechanism;

this practice is widely used in weather forecasting (Leutbecher and Palmer, 2008).

Because of these benefits, programmatic enumeration of multiple mechanistic models has the poten-

tial to facilitate the discovery and refinement of mechanistic descriptions of biological processes. In this

thesis I apply this approach tomechanistic questions in apoptotic pore formation, reviewed briefly in the

following section.
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1.3 Molecular mechanisms in apoptosis

Apoptosis is a programmed cell death pathway that eliminates cells as part of normal cellular turnover and

in response to stress and damage (Green, 2011). It is marked by several morphologic features, including

membrane blebbing andnuclear fragmentation, and is defined biochemically by the activation of a family

of cysteine proteases known as caspases (Galluzzi et al., 2014). Once activated by proteolytic cleavage, the

subgroup of caspases known as “executioners” cleave a large number of downstream substrates, leading

to the breakdown of the cell.

Akey step in the activationof executioner caspases ismitochondrial outermembranepermeabilization,

orMOMP (Tait and Green, 2010). InMOMP, the formation of pores in the mitochondrial outer mem-

brane results in the release of a number of pro-apoptotic factors from the mitochondrial intermembrane

space into the cytosol, where they trigger the activation of executioner caspases (Figure 1.3). In most cases

the post-MOMP reactions are rapid and complete, making MOMP the “point of no return” (Goldstein

et al., 2000; Rehm et al., 2002; Albeck et al., 2008a). MOMP is an essential process for stress-mediated

(intrinsic) apoptosis and, inmany cell types, for receptor-mediated (extrinsic) apoptosis as well (Barnhart

et al., 2003; Maas et al., 2103). Because of its role in governing life-death decisions, the tendency of a cell’s

mitochondria to undergo MOMP is highly predictive of cell death in response to anti-cancer drugs and,

ultimately, clinical responses (Chonghaile et al., 2011; Vo et al., 2012).

Stress

BH3-only proteins

Cyto c
Smac

Executioner caspases

Death

Mitochondria
MOMP

Figure 1.3: General mechanism of intrinsic apoptosis. Cellular stress or other damage leads to the ac-

tivation of one ormore BH3-only proteins, which converge on themitochondrial outer membrane to

triggerMOMP by interactions with other Bcl-2 proteins. MOMP leads to the release of pro-apoptotic

proteins such as cytochrome c and Smac, which activation executioner caspases, triggering the break-

down of the cell.
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MOMP is regulated by an evolutionarily-related family of proteins known as the Bcl-2 family, which

contains both pro- and anti-apoptoticmembers (Figure 1.4) (Chipuk et al., 2010; Youle and Strasser, 2008;

Czabotar et al., 2014). The pro-apoptotic “effectors,” Bax and Bak, undergo an activating conformational

change allowing them to oligomerize and form the pores in the mitochondrial outer membrane (Hsu et

al., 1997; Hsu and Youle, 1998; Hsu and Youle, 1997). This conformational change is triggered by binding

ofmembers of theBH3-only subfamily ofBcl-2 proteins, which share only oneof the fourBcl-2 homology

(BH) regions with the other members (Llambi et al., 2011; Kim et al., 2009). The anti-apoptotic family

members, which include the known oncogenes Bcl-2, Bcl-XL, and Mcl-1, prevent death by binding and

inhibiting both the BH3-only activators (Certo et al., 2006; Letai et al., 2002; Kim et al., 2006) and the

activated effectors (L. Chen et al., 2005; Willis et al., 2007; Willis et al., 2005). The additional subgroup

of BH3-only proteins known as “sensitizers,” though not able to trigger activation or Bax and Bak, bias

the cell to pro-death stimuli by inhibiting the anti-apoptotic proteins (Letai et al., 2002). The dual role of

activator BH3-only proteins in activating Bax and Bak—directly, by triggering activating conformational

changes, as well as indirectly, by inhibiting the anti-apoptotics—was the basis of a longstanding debate

over which of these twomodes was of greater importance, a topic I revisit in Chapter 2 (Leber et al., 2007;

Leber et al., 2010; Chipuk et al., 2010).

Bcl-2
Bcl-XL
Mcl-1

Bax
Bak

(Bok)

tBid
Bim

Puma

Bax*
Bak*

(Bok*)
Pore

Bad
Noxa
Hrk

(etc.)

Effectors
Anti-apoptotics

BH3-only activator 
BH3-only sensitizer

Figure 1.4: Interactions among Bcl-2 family members. Binding of the BH3-only activators triggers an

activating conformational change in the effectors Bax and Bak (indicated by *). The anti-apoptotic

members inhibit this process in twoways: first, by binding the activator BH3-onlies, they prevent

activation of Bax and Bak. Second, by binding specifically to the activatedd forms of Bax and Bak they

prevent downstream formation of pores. The sensitizer BH3-only proteins are unable to activate Bax

and Bak, but by binding to the anti-apoptotics they enable both activation and pore formation. Recent

evidence suggests that Bok, which shares structural characteristics with Bax and Bak, can form pores

but does not depend on BH3-only proteins for activation.

Several Bcl-2 proteins have been crystallized in their soluble truncated forms, aiding in the understand-

ing of the structural basis of their interactions (Ku et al., 2011; Suzuki et al., 2000; Aritomi et al., 1997; Day
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et al., 2005). The anti-apoptotics appear to share a common mechanism for binding to both BH3-only

proteins and effectors, in which a conserved hydrophobic groove spanning the BH3 and BH1 regions of

the anti-apoptotic protein binds tightly to the BH3 region of the effector or BH3-only protein, inhibit-

ing its activity. A recent study has also suggested that an interaction of the BH4 domain of Bcl-2 with a

noncanonical pocket on Bax may also have a role in inhibition of pore formation (Barclay et al., 2015).

The effectors Bax and Bak are subject to a complex series of regulatory steps en route to activation,

oligomerization, and pore formation; the kinetics and structural basis of these steps are the focus of Chap-

ter 3. While Bak is constitutively bound to the mitochondrial membrane, Bax is predominantly cytosolic

andundergoes an activating conformational change associatedwith translocation tomitochondrialmem-

branes and exposure of theN-terminus (Hsu et al., 1997; Hsu andYoule, 1998; Hsu andYoule, 1997). The

NMR structure of Bax revealed that in its soluble conformation, Bax’s hydrophobic C-terminal helix is

folded into its hydrophobic groove, preventing membrane insertion (Suzuki et al., 2000). Binding of a

chemically stabilized BH3-only peptide to a “trigger site” on a pocket of Bax opposite the hydrophobic

groove triggers the release of the C-terminal helix and the exposure of the α1 and α2 helices (Gavathio-

tis et al., 2008; Gavathiotis et al., 2010). In silico screening for ligands binding this trigger site led to the

development of a small molecule Bax activator, suggesting its relevance for activation (Gavathiotis et al.,

2012). Structural analysis has suggested that the conformational change is propagated through the core

of Bax through a network of charge reorganizations (Ionescu et al., 2012).

There is also strong evidence that binding of BH3-only proteins directly to the hydrophobic groove

of both Bax and Bak plays an important role in their activation (Czabotar et al., 2013; Dai et al., 2011;

Moldoveanu et al., 2013). A crystal structure of the BH3-only peptide of Bid in complex with the hy-

drophobic groove of Bax not only suggested that these proteins bind in a similar fashion as BH3-onlies

and anti-apoptotics, but also provided a structural explanation for why some BH3-only proteins can ac-

tivate Bax and Bak and others not (Czabotar et al., 2013).

The relative roles of the rear pocket trigger site and the hydrophobic groove in Bax activation is cur-

rently unclear. One possibility is that binding at the rear pocket is responsible for the initial release of

the N- and C-terminal helices but is not sufficient for full activation, with this latter step mediated by
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binding of the hydrophobic groove (Czabotar et al., 2014). However, this interpretation raises additional

questions such as whether these two distinct sites could be engaged by a BH3-only protein in a single se-

quential interaction, or whether Bax dissociates from its activator after the first step and is subsequently

rebound by a (potentially different) activator.

The structure and stoichiometry of the assembled apoptotic pore has been a key subject of investi-

gation, with important aspects remaining unresolved, including whether the stoichiometry is fixed or

variable (Volkmann et al., 2013; Borner and Andrews, 2014). A patch-clamp study using isolated mito-

chondria suggested that the Bax and Bak pore stoichiometry is fixed at roughly nine monomers consis-

tent with a barrel-stave configuration (Martinez-Caballero et al., 2009). Kinetic analysis has been used

to suggest that the minimal stoichiometry of the Bax pore is between two and four (Saito et al., 2000;

Schlesinger and Saito, 2006), though this analysis was based on an interpretation of the Hill coefficient

as a stoichiometry, which is not generally valid (Weiss, 1997). A time-lapse study of Bax-mediated dye re-

lease from giant unilamellar vesicles indicated that smaller molecules were released earlier than large ones,

suggesting a growing pore (Bleicken et al., 2013). Single-molecule microscopy of the formation of Bax

oligomers on planar lipid bilayers indicated that Bax oligomers are variable in size but consist of dimeric

units, consistent with previous crosslinking studies (Subburaj et al., 2015; Kim et al., 2006).

The question of stoichiometry is related to the question of pore stability: if pore formation involves

labile assemblies of Bax monomers or dimers, this might suggest that pores could form transiently and

subsequently dissipate, providing another point of regulation. A study measuring the dye release profile

of outer membrane vesicles prepared from isolated mitochondria suggested that pores could indeed col-

lapse (Gillies et al., 2015); however, studies using the α5 peptide from Bax’s pore forming region, which is

sufficient to form pores, showed that once formed, Bax pores tend to remain open (Fuertes et al., 2010).

Additional studies will be required to fully resolve these questions.

Substantial evidence now indicates that dimerization of both Bax and Bak is mediated by symmetric

BH3:groove interactions (Dewson et al., 2008; Dewson et al., 2012), rather than in an asymmetric “head-

to-tail” fashion (Bogner et al., 2010). Mounting evidence that activation of Bax andBak by BH3-only pro-

teins and Bax/Bak homodimerization are both mediated by canonical BH3:groove interactions presents
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a conundrum: how do the BH3-only activators engage the Bax/Bak groove to trigger a conformational

change without preventing subsequent homodimerization and pore formation? One explanation is that

engagement of the Bax/Bak groove by BH3-onlies results in a conformational change in the groove it-

self that is less favorable for the BH3-onlies, causing their rapid dissociation in a “hit-and-run” fashion.

However, it has also been shown by FRET that Bid and Bax remain bound at equilibrium, when most

Bax is in pores (Lovell et al., 2008). Co-immunoprecipitation of activated Bax using the 6A7 antibody

pulls down tBid, another indication that Bid and Bax remain bound (Kim et al., 2009). This suggests

a dynamic equilibrium with rapid exchange between BH3:Bax and Bax:Bax dimers, or a noncanonical

interaction between BH3-onlies and activated Bax at a site other than its hydrophobic groove.

Studies with Bax-derived peptides have shown that Bax’s ownBH3 region can trigger activation of full-

length Bax, suggesting positive feedback by auto-activation (Tan et al., 2006). Theoretical analysis has

suggested that Bax autoactivation could play an important role in making pore formation bistable and

thereby irreversible (Cui et al., 2008). Experiments using purified Bax activated by heat rather than BH3-

only proteins showed that while Bax mutated at the trigger site (K21E) was inactive, the double mutant

with the complementary mutation in Bax’s own BH3 region was able to form pores, suggesting a role for

Bax auto-activation in trans via the trigger site (Gavathiotis et al., 2010). However, because dimerization

of Bax via a symmetric BH3:groove interaction would sequester the BH3 region and thereby prevent

auto-activation, it is unclear how significant this type of interaction is in typical scenarios.

1.4 Systems biochemistry allows quantitative characterization of mechanisms

Kinetic analysis of protein interactions in vitro has been a mainstay of biochemistry since the identifica-

tion of the enzyme-substrate complex by Michaelis and Menten (Gunawardena, 2012). However, mod-

ern systems biology has focused on using dynamical models either to derive theoretical conclusions or to

interpret experimental data from whole cells. While these studies are valuable, it is frequently difficult

to make the necessary (often complex) cellular perturbations to validate model conclusions. For exam-

ple, while Albeck et al. demonstrated that MOMP was responsible for the snap-action kinetics of cas-

pase activation in single cells, subsequent biochemical studies suggested limited support for the proposed
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mechanism (Albeck et al., 2008b).

Reconstitution biochemistry involving complexmixtures of proteins, membranes and cellular extracts

offers a middle ground between binary protein-protein interaction studies and cell-based experiments.

This approach, which has also been termed “meso-scale systems biology” (Kirschner, 2005) or “synthetic

biology of minimal systems,” (Schwille and Diez, 2009) provides a fertile ground for detailed and quan-

titative characterization of mechanisms. In the in vitro setting, control over absolute concentrations of

individual elements allows for systematic experimental perturbations andmechanistic interpretation. Be-

cause in vitro studies reduce many of the experimental barriers that hold back many modeling studies,

they also allow for deeper exploration of mechanistic alternatives and highlight the strengths and weak-

nesses of modeling methods.

In vitro studies of Bcl-2 family interactions using synthetic liposomes or isolated mitochondria have

provided many important insights into pore formation mechanisms. A key step was the identification

of the minimal set of components required to reconstitute pore formation activity in vitro, including an

early analysis of the importance of the particular lipid constituents of the membrane in facilitating Bax

activation (Kuwana et al., 2002). Many subsequent reconstitution experiments established the identity

of activators (Du et al., 2011), the sequence of steps involved in Bax activation (Lovell et al., 2008), and the

role of specific lipid and protein constituents in the pore formation process (Schafer et al., 2009; Shamas-

Din et al., 2015; Shamas-Din et al., 2013).

1.5 Synopsis of thesis

In Chapter 2 of this thesis, I introduce PySB, a framework for programmatic modeling of biochemical

systems. Describing biochemical systems using tools and approaches from computer programming al-

lows complex pathways to be described with a high-level vocabulary that is a good conceptual fit with

the language naturally used by biologists. Importantly, this enables alternative models of a process to

be easily and transparently enumerated, allowing for calibration and discrimination of model ensem-

bles. To demonstrate this approach, I formulate several alternative models of Bcl-2 mediated regulation

of MOMP; these include several previously published in the literature as well as newly formulated “di-
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rect,” “indirect,” and “embedded together” models. All models are described using reusable elements at

multiple scales, termedmodules,motifs andmacros, making differences between the models immediately

apparent upon inspection of the model code.

In Chapter 3, I use an ensemble of kinetic models to identify a novel feature of the Bax pore formation

pathway, the formation of a structurally distinct intermediate preceding pore formation. Discrimination

among an ensemble of models representing differing numbers of conformational states suggests that Bax

adopts three or four distinct conformational states en route to pore formation. The model allows data

from labeled Bax variants with widely differing activities to be integrated into a single coherent picture

of the activation sequence. Analysis of the three conformation model shows that the first transition is

fast and is associated with binding of BH3-only activators and a concurrent increase in hydrophobicity

of the N-terminal and BH3 regions of Bax. The second transition is slower and is associated with Bax

oligomerization and pore formation. The hydrophobicity increase of the C-terminal region occurs on a

slower timescale coordinatedwith insertionofpore-forminghelices, suggesting that this is a later step than

previously thought. Analysis of Bax point mutants identified through cancer genome sequencing results

in the identification of mutants that have blocks in pore formation at the intermediate step, indicating

that the two transitions are structurally independent.

InChapter 4 I address the closely related question of how concentrations of the various constituents of

aminimal pore formation system—cBid, Bax, and synthetic liposomes—affect the dynamics of Bax inser-

tion and permeabilization. By systematically exploring the concentration phase space, I show that many

mechanistic details of the various types of interactions—Bid:lipid, Bax:lipid, Bid:Bax, and Bax:Bax—

must be accounted for in order to obtain a complete and consistent explanation of the data. In addition,

overall permeabilization kinetics is, paradoxically, slowed down by the nearly irreversible recruitment of

Bax to existing pores. I find that pores are stable rather than transient, and consist minimally of four

subunits.

Finally, in Chapter 5, I discuss the outlook for extending the modeling approaches described in this

thesis to larger and more complex systems. Adoption of a “literate modeling” methodology will likely

make construction of large models tractable for a larger community of modelers. In addition, recent
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developments in machine reading of the scientific literature may help with the assembly and translation

of prior knowledge into executable models, greatly reducing the amount of time and effort involved.
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Abstract

Mathematical equations are fundamental to modeling biological networks but as networks get large and

revisions frequent it becomes difficult to manage equations directly or to combine previously developed

models. Multiple simultaneous efforts to create graphical standards, rule-based languages and integrated

software workbenches aim to simplify biological modeling but none fully meets the need for transpar-

ent, extensible, and reusable models. In this paper we describe PySB, an approach in which models are

not only created using programs, they are programs. PySB draws on programmatic modeling concepts

from little b and ProMot, the rule-based languages BNGL and Kappa and the growing library of Python

numerical tools. Central to PySB is a library of macros encoding familiar biochemical actions such as

binding, catalysis and polymerization making it possible to use a high-level, action-oriented vocabulary

to construct detailed models. As Python programs, PySB models leverage tools and practices from the

open-source software community, substantially advancing our ability to distribute andmanage the work

of testing biochemical hypotheses. We illustrate these ideas using new and previously published models

of apoptosis.

2.1 Introduction

Mechanistic studies that couple experimentation and computation typically rely on models optimized

for specific questions and biological settings. Such “fit-to-purpose” models can effectively describe and

elucidate complex biological processes but given available data they are usually restricted in scope, encom-
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passing only a subset of cellular biochemistry (Schleich et al., 2012; Xu et al., 2010; Batchelor et al., 2008;

Huber et al., 2011). Even in disciplines in which modeling is more mature, all-encompassing models are

rare. However, it is common for fit-to-purpose models to require modification involving the addition,

change or elimination of species and reactions based on new discoveries. Often a family of models is

needed (Albeck et al., 2008b; Rehm et al., 2009; Xu et al., 2010; Muzzey et al., 2009; Kleiman et al., 2011)

each of which represents a competing molecular hypothesis derived from the literature, a different way

of encoding ambiguous “word models” drawn from molecular biology, or postulated differences in a

network from one cell type to the next (Gnad et al., 2012). One of the promises of systems biology is

that collaborative and iterative construction and testing of models can improve hypotheses by subjecting

them to an ongoing process of testing and improvement. However, the current proliferation of inde-

pendently derived fit-to-purpose models frustrates this goal (Krakauer et al., 2011). We require “second

generation” tools that leverage existing approaches to biological model construction and documentation

while adding new means for modifying, comparing and sharing models in a transparent manner.

Dynamicbiological systems are generallymodeledusing stochastic or deterministic rate equations. The

latter can be described using networks of ordinary differential equations that precisely represent mass

action kinetics. However, when a network model has many species and variables, equations become a

poor tool formodel development andunderstanding. Even familiar biochemical processes are remarkably

complex at the level of equations: for example, fully accounting for the binding and post-translational

modifications underlying activation of growth factor receptors can require thousands of equations that

are tedious to generate, hard to error-check and difficult to understand (Hlavacek et al., 2006). The need

for frequent updates is also a challenge because even a simple modification of a biochemical cascade can

require dozens of small changes in the corresponding equations. When operating at the level of equations

it is also difficult to reuse the work of others directly. For example, in the field of receptor-mediated

apoptosis, Howells et al. (2010) described a conceptual extension of a previously published model of

Bcl-2 proteins (which control mitochondrial outer membrane permeabilization or MOMP, Box 2.1) (C.

Chen et al., 2007a) by adding the BH3-only Bcl-2 family member Bad. Interactions among the core set of

Bcl-2 proteins were identical between the twomodels, butHowells et al. rewrote the original set ofODEs
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simply to add a few new reactions. Manually re-building earlier models is not only time-consuming but

also error-prone: as described in detail below, the practice has introduced errors and unintended changes

in another pair of related apoptosis models. Moreover, the tendency to make numerous trivial changes

in duplicated elements (e.g. by renaming species)makes it difficult to focus on key differences, frustrating

later attempts at model comparison (Mallavarapu et al., 2009).

Several projects are underway to address the problems ofmodel proliferation and complexity using for-

malisms that aim for abstraction, transparency and reusability. Chief among these is rule-basedmodeling

(Hlavacek et al., 2006; Bachman and Sorger, 2011) inwhichmodels are created using specialized languages

such as BioNetGen Language (BNGL) (Faeder et al., 2009) or Kappa (Danos et al., 2007b). These lan-

guages describe local interaction rules between specific domains or “sites” on molecules (e.g., enzymes

and their substrates) and are easier to understand and reuse than equations (Danos, 2009). Rule-based

approaches enable modeling of otherwise intractably complex systems in which post-translational mod-

ification and the formation of multi-protein signaling complexes give rise to large numbers of distinct

species (Sneddon et al., 2011; Deeds et al., 2012; Blinov et al., 2006). Rules can also be subjected to formal

analysis (Danos et al., 2008; Feret et al., 2009) and used to generate both deterministic and agent-based

simulations (Danos et al., 2007a; Sneddon et al., 2011).

While powerful, rule-based languages such as BNGL and Kappa do not exploit “higher-order” pat-

terns in biochemical systems such as multi-step catalysis, scaffold assembly, polymerization, receptor in-

ternalization, etc. These patterns often recur several times in a single model and also are frequently en-

countered in models of different molecular networks. Currently it is necessary to regenerate the rule sets

for biochemical patterns each time the patterns arise. The creation of models having related but variant

topologies presents an important special case of a higher-order pattern, particularly when a core process

remains the same across all models andmodifications focus on specific reactions. In both rule- andODE-

based models it is necessary to implement the change for each model in the set, a laborious process when

the number of models is large. Modeling tools that leverage approaches from software engineering are

one way to increase reusability and reduce duplication (Mallavarapu et al., 2009; Gnad et al., 2012; Ped-

ersen and Plotkin, 2008; Danos et al., 2009; Mirschel et al., 2009). In particular, LISP frameworks such
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Box 2.1: TRAIL-mediated apoptosis and the Bcl-2 protein family.

C8 Bid Bax

Baxmito* Bcl-2

Pore

DISC

TRAILTNF

XIAP

Ub_C3*

C6

C3C3

cPARP

Smac

CyC

C9

Apaf

Apoptosome

CyC

DISC module

PARP module

MOMP module

Box 1 Figure

TRAIL is a prototypical pro-death ligand that binds transmembraneDR4andDR5 receptors and leads to formationof intracellular,

multi-component death inducing signaling complexes (DISCs). Autocatalytic processing of initiator procaspases-8 and 10 at the

DISC allows the enzymes to cleave procaspase-3 but caspase activity is held in check by XIAP, an E3 ubiquitin ligase that blocks

the caspase-3 active site and targets the enzyme for ubiquitin-mediated degradation. In most cell types, activation of caspase-

3 and consequent cell killing requires mitochondrial outer membrane permeabilization (MOMP). MOMP allows translocation of

cytochrome c and Smac into the cytosol where Smac binds and inactivates XIAP and cytochrome c activates pro-caspase-9, two

reactions that generate cleaved, active caspase-3.

MOMP is regulated by a family of ~20Bcl-2 proteins (Youle and Strasser, 2008) having three functions: pro-apoptotic effectors

Bax and Bak assemble into pores, anti-apoptotic Bcl-2, Bcl-XL, Mcl-1, Bcl-W and A1 proteins block pore formation and the “BH3-

only proteins” such as Bid, Bim, and Puma activate the effectors and inhibit the anti-apoptotics. Bid, themost important BH3-only

protein forextrinsic cell death, is adirect substrateof caspases8/10and its active form(tBid)binds toandactivatesBaxandBakvia

a recently elucidated structural transition (Gavathiotis et al., 2010; Kim et al., 2009). The overall pathway can be roughly divided

into a “receptor to Bid” module (yellow in the figure), a “pore to PARP”module (blue), and aMOMPmodule (orange).

Structural and cellular studies ofBcl-2proteins are consistentwith a varietyof differentmechanisms forMOMP.Adirectmodel

posits that effectors form pores only when activated by proteins such as tBid (Letai et al., 2002; Kim et al., 2006; Ren et al., 2010).

The indirect model proposes that Bax and Bak are constitutively able to form pores but are held in check by anti-apoptotic Bcl2

proteins (Willis et al., 2007). Recent studies support a combination of both direct and indirect mechanisms (Mérino et al., 2009;

Llambi et al., 2011; Leber et al., 2010). The “embedded together” model emphasizes the active role of membranes in determining

the conformational states andactivity ofBcl-2proteins and that the anti-apoptoticBcl2proteins possess all of the same functional

interactions as the effectors except pore formation and therefore function as dominant-negatives (Billen et al., 2008; Leber et al.,

2010). Controversy aboutMOMPmechanisms reflects the large number of Bcl-2 proteins involved, the role of protein compart-

mentalization and localization in activity, the diversity of apoptosis inducers and the fact that different cell types express different

Bcl-2 proteins at very different levels. Detailedmechanistic models ofMOMP are nonetheless important for rationalizing the se-

lectivity of anti-Bcl2/Bcl-XL drugs such as ABT-263, understanding the oncogenic potential of proteins such as Mcl-1 and Bcl-2,

and elucidating the precise mechanisms of action of pro-apoptotic chemotherapeutics.
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as little b (Mallavarapu et al., 2009) and ProMot (Mirschel et al., 2009) have demonstrated the value of

programmatic approaches. However, ProMot does not use rules, limiting its effectiveness for combina-

torially complex systems; little b, while implementing rules internally, does not interoperate with tools

and languages from the broader rule-based modeling community and is no longer in development (the

similarities and differences between the little b and ProMot approaches have been described previously

(Mallavarapu et al., 2009). Combining the strengths of rule-based andprogrammatic approaches tomod-

eling is a key goal of the work described here.

A benefit of modeling biological systems using contemporary approaches from computer science and

open-source software engineering is the ready availability of tools and best practices for managing and

testing complex code. Good software engineering practice promotes abstraction, composition andmod-

ularity (Mallavarapu et al., 2009; Mirschel et al., 2009). Through abstraction, the core features of a

concept or process are separated from the particulars: for example, a pattern of biochemical reactions

(e.g., phosphorylation-dephosphorylation of a substrate) is described once in a generic form as a sub-

routine and then instantiated for specific models simply by specifying the arguments (e.g., species such

as Raf, PP2A, and MEK). In programming, abstraction is achieved through the use of parameterizable

functions or macros that are written once and then invoked as needed. Functions can be built up from

other functions, a process known as composition. Abstraction and composition can occur at all levels of

complexity: just as complex functions can be built from simple functions, large programs can be built

up from smaller subsystems that are documented and tested individually. When these subsystems have

well-defined input-output interfaces, they can be used as libraries that can make it possible to write new

programs using a simple vocabulary of well-tested concepts (e.g., a library of biochemical actions or core

pathways such as theMAPK cascade) (Pedersen and Plotkin, 2008). The decomposition of complex bio-

logical models in this fashion facilitates extensibility and transparency, since well-developed mechanisms

can be reused and changes can be localized to the subsystem that needs revision.

Contemporary software engineering has much to teach us about the difficult task of developing and

documenting models in a distributed setting. Software engineers “publish” their findings using robust

programming tools that support code annotation, documentation, and verification, all significant chal-
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lenges in biological modeling (Hlavacek, 2009). The open source software community also provides a

valuable socio-cultural framework for managing large, collaborative projects in the public domain. Ver-

sion control tools such as Git and Subversion, along with “social coding” websites such as GitHub, have

facilitated the collaborative development of software as complex as the kernel of the Linux operating sys-

tem (http://github.com). It would be highly desirable to exploit such social and technical innovation

in solving the problems of incremental model development and reuse in biology.

In this paperwedescribePySB, anopen-source programming frameworkwritten inPython that allows

concepts and methodologies from contemporary software engineering to be applied to the construction

of transparent, extensible, and reusable biological models (http://python.org; Oliphant, 2007). A

critical feature of modeling with PySB is that models are Python programs, and tools for documenta-

tion, testing, and version control (e.g, Git) can be used to help manage model development. Strictly

speaking, a PySB “model” is a Python program, that, when executed, produces another program (the

underlying reaction rules) that can be analyzed or used to create equations for simulation. The PySB

framework provides a high-level action-oriented vocabulary congruent with our intuitive understand-

ing of biochemistry (A phosphorylates B, C translocates to the nucleus, etc.). PySB is closely integrated

with Python numerical tools for simulation and parameter estimation and graphical tools that enable

plotting of model trajectories and topologies. We demonstrate the use of PySB to re-instantiate 15 pre-

viously published ordinary differential equation (ODE)-based models of the Bcl-2 family proteins that

regulate apoptosis (Albeck et al., 2008b; C. Chen et al., 2007a; C. Chen et al., 2007b; Cui et al., 2008;

Howells et al., 2010). We show how PySB can be used to decompose models into reusable macros that

can be independently tested and we generate composite models that combine a prior model from our

lab describing extrinsic apoptosis (Albeck et al., 2008b; Albeck et al., 2008a) with alternative hypotheses

about Bcl-2 family interactions from other investigators. Finally, we develop and calibrate an expanded

cell death model that spans the diversity of the multi-protein Bcl-2 family and draws on findings from

leading biochemists in the field, depicting a unified, “embedded together” mechanism for mitochondrial

membrane permeabilization (Leber et al., 2010; Llambi et al., 2011). All models in this paper, along with

the PySB source code and user manual, are available for sharing and further development at GitHub and
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Box 2.2: PySB embeds a biological modeling language within Python.

Existing computer languages developed for biological modeling (e.g., BNGL or SBML) use a specialized syntax to concisely encode

the detailed specifications of biological models. However, such languages, more generally known as domain-specific languages

(DSLs), lack many features found in general-purpose programming languages (functions, classes, loops, etc.) that can be used for

organizing complex code and making it more human-readable. They also often lack ancillary tools commonly found in general-

purpose programming languages, such as testing frameworks or documentation generation support. Models written using PySB

areprograms in thePythonprogramming language—theyarenot specializedfile formats interpretedbymodelingprograms. When

executed, a PySBmodel programmatically “builds up” the elements of a rule-basedmodel (molecule types, rules, parameters, etc.)

until the specification is complete; the Python model object that results can then be subject to further analysis. A traditional,

object-oriented approach to building up amodel in thiswaywould requiremany extra lines of code to create and track objects rel-

ative to aDSL. PySB streamlines the process of programmatically buildingmodels by overloading several Python operators (+,>>,
<>,(),%) to allow biological rules to be expressed in a chemistry-like syntax based on BNGL. In addition, the SelfExporter helper

class allows models to be built up declaratively in BNGL-like fashion, further minimizing the required code. The overall result is

a specialized language for biological modeling “contained within” Python and implemented using Python operators (the Python

package SymPy for symbolic mathematics uses a similar approach). While this “syntactic sugar” streamlines the most common

modeling use cases, in some advanced modeling scenarios a more traditional programming syntax may be preferred; the stream-

lined syntax is thus entirely optional. The PySB syntax is described in detail in the Supplementary information.

the PySB website (http://pysb.org; Methods).

2.2 Results

We chose Python as the language for PySB due to its widespread use in the computational biology com-

munity, support for object-oriented and functional programming, and rich ecosystem of mathemati-

cal and scientific libraries. At the outset we determined that PySB should interoperate seamlessly with

BioNetGen (Faeder et al., 2009) and Kappa (Danos et al., 2007b) and thereby build on substantial in-

vestments in rule-based modeling. A PySB model consists of instances of a core set of classes: Model,

Monomer, Parameter, Compartment, Rule, Initial, and Observable, closely mirroring the form

of BNGL and Kappa models. However, in PySB the component declarations return software objects

inside Python, allowing model elements to be manipulated programmatically. To simplify the process

of writing rules and to maximize the syntactic match with BNGL, PySB redefines (overloads) some of

the mathematical operators in Python to create a shorthand that resembles chemistry notation (Box 2.2).

For example, in the context of a PySB rule definition, the “+” operator (which in other contexts repre-

sentsmathematical addition) is used to enumerate a list of reactants or products. It is not necessary to use

overloaded PySB operators but it makes themodels easier to write and understand (see “PySB Syntax” in

Methods and the Supplementary information).

31

http://pysb.org


By way of illustration, consider a “Hello World” program in PySB involving reversible binding of pro-

teins L and R, each of which contains a single binding site s. A PySB program for this simple reaction has

high overhead relative to the equivalent set of ODEs but serves to introduce the basic PySB syntax and

show how it interoperates with other software such as BNG, the VODE integrator (Brown et al., 1989),

and theMatplotlib plotting library (Hunter, 2007). In the first block of the program (Figure 2.1A; block 1)

a declaration ofmolecule types (“monomers” in PySB) is followed by the forward and reverse rate param-

eters, kf and kr, and initial conditions for unbound L and R. The syntax for the reversible binding rule

(which will be familiar to users of rule-based languages) reads as follows: when the proteins L and R both

have empty binding sites s (e.g. L(s=None)), they reversibly bind to form a complex that shares a single

“bond” (e.g., L(s=1) % R(s=1)), at rates kf and kr. This approach to naming binding sites (and call-

ing interactions “bonds,” without implying covalent modification) is drawn from rule-based languages

and makes it possible to describe molecules having multiple sites of interaction with different specifici-

ties, modifications, and occupancy states (e.g. the distinct binding sites on the TRAIL receptor for ligand

andDISC adaptor proteins). The “Hello World” model concludes by designating an observable of inter-

est, the complex LR. (For additional details on the syntax used in this model, see Box 2.2 and the “PySB

Syntax” section of the Supplementary information; a UML class diagram of the core PySB classes is also

provided in Supplementary Figure S3.) The second block of code in Figure 2.1A defines a time range and

calls the PySB function odesolve, which performs deterministic model simulation by invoking BNG

(to generate the reaction network) and the numerical integrator VODE (see also Figure 2.1B). Simulation

results are returned as amatrix which is graphed using the plot command fromMatplotlib (Figure 2.1A,

block 3; Figure 2.1B).

2.2.1 Using macros to model recurrent biochemical actions

The benefits of PySB become apparent only with more complex and interesting models in which pro-

gramming constructs such as conditionals, loops, functions, classes, andmodules areused todefine reusable

elements. The complexity of these elements can vary from a few species to multi-component cascades.

Macros, reusable Python functions that are programmatically expanded into rules and reactions, define
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from pysb import *

from pysb.integrate import odesolve

from pylab import plot, linspace

Model()

# Declare the monomers

Monomer('L', ['s'])   

Monomer('R', ['s'])

# Declare the parameters

Parameter('kf', 1e-3) 

Parameter('kr', 1e-3)

# Declare the initial conditions

Initial(L(s=None), Parameter('L_0', 100)) 

Initial(R(s=None), Parameter('R_0', 200))

# Declare the binding rule

Rule('L_binds_R',     

     L(s=None) + R(s=None) <> L(s=1) % R(s=1),

     kf, kr)

# Observe the complex

Observable('LR', L(s=1) % R(s=1)) 

# Simulate the model

time = linspace(0, 40)

x = odesolve(model, time)

plot(time, x['LR'])

PySB

declarations 

Make BNGL

Rule(’L_binds_R’,

     L(s=None) + R(s=None) <>

     L(s=1) % R(s=1), kf, kr)

Build Rxn Net

(BNG)

User PySB External Tools

Integrate

(VODE)

Result

1

2

Make ODEs

L(s) + R(s) <-> L(s!1).R(s!1)

    kf, kr

dL/dt = -kf*L*R + kr*LR

dR/dt = -kf*L*R + kr*LR

dLR/dt = kf*L*R - kr*LR

odesolve(...)

plot(...)
Plot

(Matplotlib)
3

begin reactions

    1 1,2 3 kf #L_binds_R

    2 3 1,2 kr #L_binds_R(reverse)

end reactions

Data Matrix

1

2

3

A

Figure 1

B

Figure 2.1: Creation and simulation of a “HelloWorld” model in PySB.

(A)Creation and deterministic simulation of amodel using PySB. The call to Model() creates the pysb.core.Model object to
which all subsequently declared components are added. The first block of code declares themolecule types, parameters, initial condi-

tions, reversible reaction rule and observable necessary for modeling and simulating the reversible binding of prsoteins L and R. The
second block of code calls the odesolve function from the pysb.integratemodule to generate and integrate theODEs. The
third block plots the simulated timecourse using theMatplotlib plot command. Numbers associated with the code blocks identify
the correspondences between the code and the control flow shown in (B).

(B)Control flow for anODE simulation of a PySBmodel. The columns “User,” “PySB,” and “External Tools” indicate the locus of control

of each step in the process (boxes). The “Result” column shows the result of each individual step: the gray box indicates results of steps

that are internal to the call to odesolve, while the other results are visible to the user at the top level. After declaring themodel
elements as in (A), the user calls odesolve, which generates the corresponding BNGL for themodel, invokes BNG externally on the

generated BNGL code to create the reaction network, parses the reaction network to generate the corresponding set of ODEs, and

calls an external integrator (VODE) to generate the trajectories. The trajectories are returned to the user as a Numpy record array,

where they are visualized with a call to theMatplotlib function plot.

low-level biochemical actions such as “catalyze,” “bind,” or “assemble,”mirroring thewaywe describe bi-

ological processes verbally. PySB currently contains 13 general-purpose macros covering reversible bind-

ing, catalytic modification, synthesis, degradation, and pore assembly. Users can generate other model-

specific macros to implement new or uncommon mechanisms, thereby creating libraries of biochemical

actions for subsequent modeling projects (we are currently adding new macros ourselves); implementa-

tion of distributed or coordinated phosphorylation/dephosphorylation cascades and loops is an obvious

candidate for such a library.

As an example, the catalyze macro implements a mass action model of an enzyme-mediated bio-

chemical transformation (Figure 2.2A) based on six user-specified arguments: the enzyme and its binding

site for substrate, the substrate and its binding site for enzyme, the product, and a list of forward, reverse,
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and catalytic rate constants. Figure 2.2A illustrates the application of catalyze to a reaction in which

caspase-8 cleaves Bid to form truncated Bid (tBid; see Box 2.1 for a description of the relevant biology).

Improved transparency is an important benefit of using macros in that they explicitly describe how el-

ementary reactions are implemented. For example, catalyze invokes a two-step model of catalysis in

which an enzyme-substrate complex is formed as an intermediate step: E + S ⇋ ES → E + P. Some

published models of apoptosis (Cui et al., 2008; C. Chen et al., 2007a; C. Chen et al., 2007b; Howells

et al., 2010) use a pseudo-first-order, one-step approximation E+ S → E+ P that has the merit of fewer

parameters. However, depending on time scales and parameter values there is a profound difference in

the dynamics of one- and two-step catalysis: the one-step model, for example, makes the strict assump-

tion that the enzyme always operates in its linear range and cannot be saturated. These differences are

not apparent from the visual or existing verbal descriptions of the ODEs but instead require careful ret-

rospective analysis. In contrast, PySB allows exploration of mechanistic differences simply by calling an

alternative catalysis macro, catalyze_one_step (Supplementary Figure S1B). The benefit of macros is

not only that themodel is more concise (the catalyzemacro call replaces two rules and fourODEs) but

also that the difference between one- and two-step catalytic schemes is clearly declared and need not be

inferred retrospectively. Since macros are tested programmatically they also ensure correct instantiation

of forward, reverse and catalytic reactions, an important benefit since failure to implement these processes

correctly is remarkably common (see below and Supplementary note).

The power of macros is most evident with complex biochemical actions. For example, the assem-

ble_pore_sequentialmacro (Figure 2.2B) implements sequential assemblyof amembrane-associated

pore from multiple identical subunits. It was written to explore how Bax and Bak associate in the mito-

chondrial outer membrane to form the pore that translocates cytochrome c and Smac into the cytosol

during MOMP (Youle and Strasser, 2008). The arguments to assemble_pore_sequential are the

identity of the pore-forming protein and its two binding sites, the maximum number of proteins in a

pore and a table containing rate constants for each assembly step. In vitro experiments suggest that Bax

and Bak assemble by sequential addition of subunits (Martinez-Caballero et al., 2009) but the precise size

of an active MOMP pore is unknown. Exploring the effects of changing the number n of subunits in a
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catalyze(C8, 'bf', Bid(state='U'), 'bf', Bid(state='T'), klist)  

Example Macro Call

Implementation

BNGL Rules

ODEs

C8(bf) + Bid(bf,state~U) <-> C8(bf!1).Bid(bf!1,state~U)  kf, kr
C8(bf!1).Bid(bf!1,state~U) -> C8(bf) + Bid(bf,state~T)   kc

C8:     ds0/dt =  kc*s2 - kf*s0*s1 + kr*s2
Bid:    ds1/dt = -kf*s0*s1 + kr*s2
C8_Bid: ds2/dt = -kc*s2 + kf*s0*s1 - kr*s2
tBid:   ds3/dt =  kc*s2

assemble_pore_sequential(Bax, 's1', 's2', 6, ktable)  

5 rules

6 ODEs

A

B Example Macro Call

BNGL Rules

ODEs

28 rules

41 ODEs

bind_table([[       Bcl2,  BclXL,  BclW,  Mcl1,  Bfl1],
            [Bid,     66,     12,    10,    10,    53],
            [Bim,     10,     10,    38,    10,    73],
            [Bad,     11,     10,    60,  None,  None],
            [Bik,    151,     10,    17,   109,  None],
            [Noxa,  None,   None,  None,    19,  None],
            [Hrk,   None,     92,  None,  None,  None],
            [Puma,    18,     10,    25,    10,    59],
            [Bmf,     24,     10,    11,    23,  None]],
            'bf', 'bf', kf=1e-3]]

Example Macro Call

BNGL Rules

ODEs

Supplementary Figure S1A 

1: Enzyme (Caspase-8)

2: Enzyme binding site name

3: Substrate (full length, cytosolic Bid)

4: Substrate binding site name

5: Product (T for truncated, cytosolic Bid)

6: List of rate parameters

Macro Arguments
1       2                    3                   4                  5                     6

1: Subunit name

2, 3: Sites for binding neighboring subunits 

 

4: Maximum number of subunits in pore

5: Table of rate parameters)

Macro Arguments
 1        2          3       4        5               

Macro Arguments

1: Bind table data (molecules and rates)

2: Binding site for row-group proteins 

3: Binding site for column-group proteins

4: Default association rate

1

2 3 4

C

Figure 2

Figure 2.2: Three examples of mechanistic abstractions usingmacros. Full implementation of all macros can be found in the

macros.py file in the PySB source code online (Methods).

(A) catalyze. The example call shows how the catalyzemacro is called to add a catalytic reaction in which active caspase-8 (C8)
binds to untruncated Bid (Bid(state=’U’)) to yield tBid (Bid(state=’T’)). Rate parameters (forward, reverse, and catalytic)
are provided in the list klist. The “Basic implementation” in Supplementary Figure S1A shows the Python source code for a sim-

plified version of the catalyzemacro. Execution of the catalyzemacro leads to the creation and addition of two rules to the
model, which, when converted into BNGL, take the form shown below. Generation of the reaction network via BNG then results in the

system of four ODEs shown at bottom.

(B) assemble_pore_sequentialmodels the assembly of a pore in a sequential fashion in whichmonomers bind to form dimers,

dimers bindmonomers to form trimers, trimers bindmonomers to form tetramers, etc. Pores of size three (trimers) and above have a

closed, ring-shaped topology, reflecting the variable structure and stoichiometry for the Bax pore suggested by recent in vitro exper-

iments (Martinez-Caballero et al., 2009). Themaximal size of the pore is given by the fourth argument to themacro (i.e., 6). With the

parameters shown in the example, the execution of themacro results in five rules (for binding of monomers tomonomers, monomers

to dimers, monomers to trimers, etc.) and six species andODEs (monomers through hexamers). Pores with greater stoichiometry can

bemodeled simply by changing the pore size argument in themacro call.

(C) bind_table is used to concisely represent combinatorial binding among two related groups of molecules. In the example call the
species in the column headers are the five known anti-apoptotic Bcl-2 proteins, while the row headers are various pro-apoptotic BH3-

only proteins. The table entries represent the dissociation constants for binding between each pair of proteins drawn from in vitro

measurements, given in units of nanomolar (Certo et al., 2006;Willis et al., 2005); the Python constant None indicates that no binding
occurs. (In place of a dissociation constant, a table cell may alternatively contain a pair of explicit association and dissociation rates.)

The names of the binding sites for the row-group and column-group proteins (i.e., “bf”) are given as the second and third arguments.
The final argument (i.e. kf=1e-3) specifies a default association rate to be applied to all reactions, given in units of nanomolar−1

second−1. The execution of the bind_table call results in the instantiation of 28 reversible binding rules, each with the given asso-
ciation rate and a dissociation rate calculated from the dissociation constant provided in the table entries; this further expands to 41

ODEs.
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pore requires creation and modification of n− 1 BNGL rules or nODEs but only one value in the PySB

assemble_pore_sequentialmacro.

Many biochemical processes are controlled by families of proteins that have overlapping binding speci-

ficities. In apoptosis,MOMP is regulated by∼ 20 pro- and anti-apoptotic Bcl-2 family proteins that have

a range of affinities for each other and bind in various arrangements. Modeling the binding of any two

Bcl-2 proteins is simple, butmanaging equations or rules for all possible binding reactions ismuchharder.

The bind_tablemacro uses a simple tabular representation to model interactions among members of

multi-protein families (Figure 2.2C). The first argument to the macro is a table (a list of lists in Python)

in which row and column headers identify pairs of interacting proteins and each table entry contains

binding constants or the value None to indicate that there is no measurable interaction. The second and

third arguments specify the binding site names for row and column species, respectively. In addition

to being concise (a single bind_table call for the Bcl-2 proteins generates 28 rules and 41 ODEs) the

tabular format highlights relationships between proteins by grouping them into functional classes; new

family members can be introduced simply by adding rows and columns. A bind_table is therefore a

simple computable representation of the “binding codes” that have been created by others to summarize

structural and biochemistry studies on Bcl-2 family members (Certo et al., 2006; Kuwana et al., 2005; L.

Chen et al., 2005). By changing the first argument in the bind_table call it is straightforward to explic-

itly substitute one set of binding data for another, a useful feature for exploring differences in published

binding codes or for modeling the behavior of mutant proteins (Debartolo et al., 2012; Fire et al., 2010).

Models that use macros such as bind_table naturally acquire a “self-documenting” character that min-

imizes the need for additional explanatory description (see Figures 2.4B and 2.5A for examples of the use

of bind_table in the context of models of MOMP initiation).

2.2.2 Modules and model reuse

Macros abstract biochemical reactions at a fairly low level of detail involving a few proteins but Python

also supports a wide variety of methods for reusing more complex model elements. We have found three

to be particularly useful: (1) Instance Reuse, for making small changes to an existing model; (2) Module
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Reuse, for programmatically composing a model from reusable pieces or modules; and (3) Class Reuse,

for models involving combinatorial variation of several independent features. Of these, Instance Reuse

is the simplest, entailing programmatic duplication of a previous model and explicit specification of new

and modified elements. Instance Reuse proved to be an appropriate way to update the PySB version

of EARM 1.0 (Albeck et al., 2008a) to include synthesis and degradation reactions (Figure 2.3A). This

approach replaces conventional “cut-and-paste” copying and editing of ODEs or BNGL rules. Reuse is

achieved by cloning the old model into a new model and then explicitly declaring the elements that are

added or modified, making the changes easy to understand and track.

Module Reuse involves the separation of a model into independent elements (“motifs” or “modules”;

see also Figure 2.7) that are written as callable subroutines in Python. It is not necessary for a biological

process to be modular in a functional sense for modularization in PySB to be advantageous. Building a

model from subroutines enables a “mix-and-match” approach in which a subset of the interactions in a

model is subjected to revision or re-examination while the rest remain the same. For example, we divided

EARM 1.0 into three modules each involving self-contained blocks of PySB code for: (1) reactions from

ligand-death receptor association to binding of DISC components, (2) interactions among Bcl-2 family

members controlling MOMP, and (3) the cascade of reactions involving initiator and effector caspases

and their immediate regulators (Figure 2.3B; Box 2.1). A series of papers examining alternative models

of MOMP have been published by multiple groups (C. Chen et al., 2007a; C. Chen et al., 2007b; Cui et

al., 2008; Howells et al., 2010) but MOMP has most commonly been studied in isolation from reactions

occurring upstream and downstream. However, it has been shown that multi-protein cascades do not

exhibit the same behavior in isolation as when they are part of larger networks (W. W. Chen et al., 2009;

Del Vecchio et al., 2008). One of the primary aims of modeling signal transduction is to contextualize

molecular mechanisms by embedding them in a network context. Thus, studies of extrinsic apoptosis

would benefit from models in which alternative hypotheses for MOMP regulation are embedded in a

more complete reaction pathway. Using conventional modeling tools it is challenging to add MOMP

“mini-models” to upstream and downstream reactions (Albeck et al., 2008b). In contrast, in PySB this

type of composition is simple: we have written a PySB program in which any of 15 models ofMOMP are
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earm_modules.py

twocpt_topo1.py

import earm_1_0

Model(base=earm_1_0.model)

# Add/modify components

synthesize_degrade_table([...])

import earm_modules

Model()

earm_modules.rec_to_bid()

# Implement variant MOMP model

<Components, macros, etc.>

earm_modules.pore_to_parp()

Model()

<Components, macros, etc.>

earm_1_0.py

def rec_to_bid():

    # Upstream module

    <Components, macros, etc.>

def pore_to_parp():

    # Downstream module

    <Components, macros, etc.>

compartment_classes.py

model_variant.py

earm_1_3.py

R
e-

us
e

topology_classes.py

R
e-

us
e

from compartment_classes import TwoCpt

from topology_classes import Topo1

TwoCpt_Topo1 = type('TwoCpt_Topo1',

                (TwoCpt, Topo1), {})

model_builder = TwoCpt_Topo1()

model_builder.build_model()

earm_1_0 earm_1_3

rec_to_bid

pore_to_parp

CptBase

Topo2Topo1

model_variant

TwoCpt MultiCpt

Compartmentalization Interaction Topology

R
e-

us
e

R
e-

us
e

TwoCpt
Topo1

class CptBase(object):

    def tBid_activates_Bax(self):

        # Default implementation

                 <Components, macros, etc.>

class TwoCpt(CptBase):

    def translocate_tBid_Bax(self):

        # Specific implementation

        <Components, macros, etc.>

class MultiCpt(CptBase):

    def translocate_tBid_Bax(self):

        # Specific implementation

        <Components, macros, etc.>

class Topo1(object):

    def build_model(self):

        self.translocate_tBid_Bax()

class Topo2(object):

    def build_model(self):

        self.translocate_tBid_Bax()

        self.tBid_activates_Bax()

A C

B

Figure 3

Figure 2.3: Three approaches tomodel re-use. Boxes with gray tabs represent Pythonmodules/files. Statements marked “Reuse”

identify the point of re-use of previously createdmodel code. Background highlighting indicates correspondence between elements in

the re-use schematic and the PySB code.

(A)Direct re-use and subsequent modification of pre-existingmodel code. A pre-existingmodel is declared in its own Python file

(earm_1_0.py). The extendingmodel, in the file earm_1_3.py (representing a later version) imports and duplicates themodel
object from earm_1_0.py and subsequently adds a list of synthesis and degradation reactions.
(B)Reuse of modules usingmacros. Macros instantiating the components for the upstream (rec_to_bid) and downstream
(pore_to_parp) portions of the extrinsic apoptosis pathway are placed in a Python file, earm_modules.py. Variant models
differing only in the reaction topology forMOMP initiation (e.g., model_variant.py) are then created by invoking thesemacros
for the shared upstream and downstream elements.

(C)Reuse and recombination of model elements through class inheritance. A shared implementation of the compartmentalization-

independent reactions for Bax activation (i.e., tBid_activates_Bax) is containedwithin the base class CptBase. Alternative
compartmentalization strategies are implemented in the child classes TwoCpt and MultiCpt, which separately implement the
compartmentalization-dependent reactions for tBid and Bax translocation (i.e., translocate_tBid_Bax). Because these classes
inherit from CptBase, they acquire the implementation of tBid_activates_Bax, representing a point of reuse. Alternative
protein interaction topologies are implementedwithin the build_model function in the two classes Topo1 and Topo2. Models

with either of the compartmentalization implementations (e.g., TwoCpt) and either of the interaction topologies (e.g., Topo1) can
then be created dynamically by inheriting from the appropriate classes, representing an additional point of reuse. Readers familiar

with the concept of polymorphism from object-oriented programmingwill note that calling the build_modelmethod on any of the
hybrid classes will polymorphically refer to the correct implementations in the parent classes.
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called up along with common rec_to_bid and pore_to_parpmodules to create 15 fully functioning

hybrid models of extrinsic apoptosis (Figure 2.3B). The upstream and downstream reactions have also

beenmodeled in several different ways by others (Schleich et al., 2012; Fricker et al., 2010; Neumann et al.,

2010; Rehm et al., 2006; O’Connor et al., 2008) and it would be straightforward to useModule Reuse to

combine different proposals for rec_to_bid and pore_to_parpwith different MOMP modules.

Class Reuse is a third andmore sophisticated approach that exploits the class inheritancemechanism in

Python. Commonmodel features are coded in a base class andmodel variants arewritten as “child” classes

of the base class, able to inherit code from the base class directly with or without programmatic modifica-

tion. Code from multiple variants can then be combined by further inheritance from more than one of

these classes. For example, we used Class Reuse tomodel the effects of reaction compartmentalization on

interactions among pro-apoptotic Bcl-2 proteins at the mitochondrial membrane (Figure 2.3C). In one

case we assumed that reactions took place in two well-mixed reaction compartments corresponding to

cytosol and membrane (Figure 2.3C, TwoCpt) and in the second we assumed that each mitochondrion

constituted a distinct reaction compartment (MultiCpt). In addition, we independently explored dif-

ferent reaction topologies involving the Bcl-2 proteins tBid andBax. Both topologies (Topo1 and Topo2)

include the translocation of tBid and Bax to membranes but only the second topology (Topo2) incorpo-

rates activation of Bax by tBid. We used inheritance to automate creation of four different models having

different compartmentalization schemes and reaction topologies (e.g., TwoCpt_Topo1). Thenotable fea-

ture ofClassReuse is thatmodel variants are created and combinedovermultiple independent “axes”—in

this example compartmentalization and protein interaction topology—transparently andwith no dupli-

cated code.

2.2.3 Integration with the Python ecosystem and external modeling tools

The iterative process of model development is dramatically accelerated when tools for model creation,

simulation, analysis and visualization are integrated. Many commercial and academic software packages

including Mathematica (Wolfram Research, Inc., n.d.) and MATLAB (Mathworks, n.d.) provide inte-

grated tools for equation-based models but are unwieldy to use with rule-based or programmatic ap-
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Tool Reference Interface Description (relevance to PySB)
NumPy (Oliphant, 2007) Python Efficient array and matrix operations

SciPy (Oliphant, 2007) Python Scientific algorithms, e.g., ODE integration, statistics,
and optimization

SymPy (SymPy Development Team, 2012) Python Symbolic manipulation of mathematical expressions
Matplotlib (Hunter, 2007) Python Plotting and other data visualizations
Graphviz (Gansner and North, 2000) Python Layout and rendering of node-edge graphs
BNG (Faeder et al., 2009) Wrapper Translation of rules to a reaction network; stochastic

simulation
Kappa (Danos et al., 2007b) Wrapper Stochastic simulation; visualization and analysis of rule

models
SBML (Hucka, 2003) Export Compatibility with SBML tools
Mathematica (Wolfram Research, Inc., n.d.) Export General-purpose scientific computing
MATLAB (Mathworks, n.d.) Export General-purpose scientific computing

Table 2.1: Integration with external modeling tools.

proaches becausemodels must be exported and imported using SBML (Hoops et al., 2006;Maiwald and

Timmer, 2008). At the same time, rule-based model editors such as RuleBender for BNGL (Smith et

al., 2012) and RuleStudio for Kappa (https://github.com/kappamodeler/rulestudio) facilitate

development of rule-based models but do not incorporate tools for data analysis, parameter fitting, and

symbolic math. Simply by virtue of being written in Python, PySB interacts natively with a large and

growing library of open-source scientific software such as NumPy, SciPy, SymPy, and Matplotlib (Table

2.1). Models written using PySB can also exploit Python tools for documentation generation (sphinx)

and for unit testing (unittest, nose, and doctest) both of which we used extensively in creating the

models of extrinsic apoptosis described below.

To interface PySB with BNG and Kappa, which are not implemented in Python, we wrote Python

“wrapper” libraries, providing access to agent-based simulation, static analysis and visualization. The

wrappers alsomanage the syntactic differences between BNGL andKappa, allowing either to be used for

the same PySBmodel. Models can be trivially exported in BNGL format for use with established “all-in-

one” tools that support BNGL, such as V-Cell (Moraru et al., 2002). PySB can export models as systems

of ODEs in formats for SBML (Hucka, 2003), MATLAB, Mathematica, or PottersWheel (Maiwald and

Timmer, 2008). Finally, to facilitate unique identification ofmodel components, we added a lightweight

annotation capability that allows any model element (including macros and modules) to be tagged with
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identifiers from external databases using subject-object-predicate triples compatible with MIRIAM (Le

Novère et al., 2005). The net result is a software environment that combines the flexibility of a general-

purpose scientific computing package with programmatic and rule-based modeling tools and an open-

source code base.

2.2.4 EARM version 2.0: a family of models of extrinsic apoptosis and MOMP

To explore the ability of PySB to model the latest molecular data on apoptosis while also building on

previous work, we used macros and Module Reuse to construct a family of cell death models involving

15 different schemes for MOMP regulation. Seven of the MOMP modules were previously published

by the research group of Shen and colleagues (C. Chen et al., 2007a; C. Chen et al., 2007b; Cui et al.,

2008), one module extends one of these models (Howells et al., 2010), five modules are from the work

of Albeck at al. (Albeck et al., 2008b), and three modules are entirely new and incorporate more com-

plete sets of interactions among Bcl-2 proteins (Figure 2.4A). The three new modules are derived from

word models in recent studies from Green and Andrews that unify previously competing mechanisms

of pore formation (Llambi et al., 2011; Billen et al., 2008; Leber et al., 2010). Each of the 15 modules was

instantiated in PySB as a distinct subroutine that can be called and analyzed in the context of a receptor-

to-caspase pathway. The set of 15 MOMP modules is by no means complete, and several noteworthy

models of extrinsic apoptosis and MOMP (Legewie et al., 2006; Bagci et al., 2006; Bentele et al., 2004;

Rehm et al., 2009; Dussman et al., 2009) have not yet been coded in PySB. However, since our objective

is to explore model reuse and composition using PySB we limited ourselves to the 15 MOMP-focused

examples described above. We collectively denote the resulting set of 30 variantmodels (15 models only of

MOMPplus 15 models of extrinsic apoptosis incorporating theMOMPmodules) as Extrinsic Apoptosis

Reaction Model version 2.0 (EARM 2.0); the models are summarized in Table 2.2 and are available as a

Python package with source code downloadable from GitHub (Methods).

While porting existingmodels into PySBwe observed that several publishedODEnetworks contained

one or more errors relative to their verbal or graphical descriptions in the original paper (Cui et al., 2008)

(see Supplementary note). Wewere unable to discern whether the errors in the publishedODEnetworks
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def chen_febs_direct(do_pore_assembly=True):

    # One-step "hit-and-run" activation of Bax by tBid

    catalyze_one_step_reversible(

        Bid(state='T', bf=None),

        Bax(bf=None, **inactive_monomer),

        Bax(bf=None, **active_monomer),

        [1e-3, 1e-3])

    # Bcl2 binds tBid and Bad (a sensitizer) but not Bax

    bind_table([[                         Bcl2],

                [Bid(state='T'),  (1e-4, 1e-3)],

                [Bad(state='M'),  (1e-4, 1e-3)]])

    if do_pore_assembly:

        assemble_pore_spontaneous(Bax(state='A', bf=None),

                                  [4e-3, 1e-3])

Albeck 11b

Albeck 11c

Albeck 11d

Albeck 11e

Albeck 11f

Chen Biophys. J.

Howells

Chen FEBS “Indirect”

Chen FEBS “Direct”

Cui “Direct”

Cui “Direct 1”

Cui “Direct 2”

Lopez “Indirect” Lopez “Direct” Lopez “Embedded”

Lopez Group

Albeck Group Shen/Howells Group

def cui_direct():

    # Build on the direct model from Chen et al. (2007)

    # FEBS Lett. (excluding pore assembly) by:

    chen_febs_direct(do_pore_assembly=False)

    # 1. Overriding some parameter values,

    one_step_BidT_BaxC_to_BidT_BaxA_kf.value = 0.0005

    bind_BidT_Bcl2_kf.value = 0.001                 

    # 2. Adding a Bad-for-Bid displacement reaction,

    displace_reversibly(Bad(state='M'), Bid(state='T'), Bcl2,

       [0.0001, 0.001])

    # 3. Adding simplified MAC formation (Bax dimerization)

    assemble_pore_sequential(Bax(state='A', bf=None), 2,

                             [[0.0002, 0.02]])

    # 4. Adding synthesis and degradation reactions

    Bax2 = Bax(s1=1, s2=None) % Bax(s1=None, s2=1)

    synthesize_degrade_table(

       [[Bax(bf=None, **inactive_monomer),      0.06,  0.001],

        [Bax(bf=None, **active_monomer),        None,  0.001],

        [Bid(state='T', bf=None),              0.001,  0.001],

        [Bcl2(bf=None),                         0.03,  0.001],

        [Bid(state='T', bf=1) % Bcl2(bf=1),     None,  0.005],

        [Bad(state='M', bf=None, serine='U'),  0.001,  0.001],

        [Bad(bf=1) % Bcl2(bf=1),                None,  0.005],

        [Bax2,                                  None, 0.0005]])

A

C D

B

Figure 4

Figure 2.4: Refactoring of publishedmodels into PySB.

(A) Relationships between themodels examined in this paper. The “Albeck Group” incorporates a series of incrementally expanded

models shown in Figure 11 of Albeck et al. (2008b); the “Shen/Howells Group” incorporates models from three papers from the re-

search group of Shen (C. Chen et al., 2007a; C. Chen et al., 2007b; Cui et al., 2008) and a derivativemodel fromHowells et al. (2010);

the “Lopez group” includes three expandedmodels introduced in this paper. The arrows indicate that onemodel has been derived or

extended from a prior model and point in the direction BaseModel→DerivativeModel.

(B) The “Direct” model fromChen et al. (C. Chen et al., 2007b) in its original ODE-based representation.

(C)Conversion of the Chen “Direct” model to a PySBmodule. The execution of the chen_febs_direct function re-
sults in rules that exactly reproduce theODEs shown above (themolecule type Bad in the PySB function corresponds to
the generic enabler speciesEna in the original equations; Bid corresponds to the generic activatorAct). Themacro cat-
alyze_one_step_reversible implements the two-reaction schemeE + S → E + P,P → S; assem-
ble_pore_spontaneous implements the order-4 reaction 4 × subunit ↔ pore. The bind_tablemacro is illustrated in
Figure 2.2C.

(D)Model extension in PySB.Module Reuse (Figure 2.3B) was used to implement the “Direct” model fromCui et al. (2008) as an ex-

tension of the prior “Direct” model fromChen et al. shown in Figure 2.4C (C. Chen et al., 2007b). Invocation of the PySB function

chen_febs_direct incorporates the elements of the original Chen et al. model; subsequent statements specify themodifications
and additions required to yield the derivedmodel fromCui et al. (2008).
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Model namea ID
(full/MOMP) Reference MOMP-only (Mnb)b Full apoptosis (Mna)c

Rules ODEs Parameters Rules ODEs Parameters

Lopez
Embedded M1a/b This paper 39 40 78 66 76 133

Lopez Direct M2a/b This paper 27 32 58 54 68 113

Lopez
Indirect M3a/b This paper 29 34 64 56 70 119

Albeck 11b M4a/b (Albeck et al.,
2008b)

7 13 17 34 48 71

Albeck 11c M5a/b (Albeck et al.,
2008b)

11 17 25 38 52 79

Albeck 11d M6a/b (Albeck et al.,
2008b)

12 18 27 39 53 81

Albeck 11e M7a/b (Albeck et al.,
2008b)

14 21 31 41 56 85

Albeck 11f M8a/b (Albeck et al.,
2008b)

14 21 31 41 56 85

Chen 2007
Biophys J M9a/b (C. Chen et al.,

2007a)
6 7 12 37 49 75

Chen 2007
FEBS Direct M10a/b (C. Chen et al.,

2007b)
5 8 12 36 48 74

Chen 2007
FEBS

Indirect
M11a/b (C. Chen et al.,

2007b)
3 6 9 34 48 72

Cui Direct M12a/b (Cui et al., 2008) 18 10 26 49 52 89

Cui Direct 1 M13a/b (Cui et al., 2008) 22 11 33 53 53 96

Cui Direct 2 M14a/b (Cui et al., 2008) 23 11 34 54 53 97

Howells M15a/b (Howells et al.,
2010)

14 12 22 45 49 84

a Model names are drawn from the first author of the paper in which the mathematical model was published.
b MOMP-only variants are identified as Mnb, e.g., M1b for the MOMP-only variant of “Lopez Embedded”.
c Full apoptosis variants are identified as Mna, e.g., M1a for the full-apoptosis version of “Lopez Embedded”.

Table 2.2: Summary of models in EARM2.0.
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represent genuine mathematical errors or merely transcription errors made in the process of converting

computer models to text. Even when we used the ODE networks as published we found cases in which

wewere unable to reproduce the results described in the figures. Our own previousworkwas not entirely

free of this problem: we could not reproduce the simulation results in Figure 11 of Albeck et al. (Albeck

et al., 2008b) without access to MATLAB source code that was inadvertently omitted from the original

publication. Our aim is not to criticize these papers but instead to emphasize that the current practice

of maintaining different forms of a model for the purpose of simulation, illustration and publication is

highly problematic. The lists of equations included as supplementary materials in most modeling papers

are particularly troublesome because they exist independently of the simulation model and the two tend

to deviate. These problems can be addressed by using electronic formats formodel exchangewith a single

master from which all other versions are derived (Hucka, 2003; Waltemath et al., 2011). As an electronic

format for models, PySB complements XML-based formats such as SBML in that macros, modules, and

other high-level abstractionsmakemodel structuremore intelligible than SBMLalone. In addition,mod-

eling biochemical processes by reusing previously validatedmacros eliminates “bookkeeping” errors such

as thosewe identified in publishedMOMPmodels. To ensure that the re-instantiatedmodels reproduced

the behavior of the originally published versions, we wrote a series of unit tests using the Python mod-

ules unittest and nose. The tests guarantee that the re-instantiated models reproduce validated states

despite translation into PySB. Further details on our approach to unit testing can be found in the online

documentation (Methods).

The structure and origin of theMOMPmodels are easier to understand using PySB than the underly-

ing sets ofODEs. This canmost easily be seen by comparing theODE andPySB versions of amodel from

Chen et al. (C. Chen et al., 2007b) (Figures 2.4B and 2.4C). The original model is relatively simple (only

seven ODEs) but understanding the precise mechanism for MOMP requires careful inspection of each

equation. By comparison, the PySB model exploits macros to make the mechanisms transparent: single-

step catalysis, combinatorial binding, and pore assembly. Many of the 15 MOMP models in EARM 2.0

represent incremental extensions of earlier models (this is particularly true of the models from Howells

et al. (2010) and Shen and colleagues (C. Chen et al., 2007a; C. Chen et al., 2007b; Cui et al., 2008) as
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well as the five models fromAlbeck et al. (2008b; 2008a); Figure 2.4A). The authors of these models pro-

ceeded by duplicatingODEs from previousmodels or papers and then adding new species or reactions as

required: for example, the three models of Cui et al. (2008) are derived directly from the “direct” model

of Chen et al. (C. Chen et al., 2007b) while themodel ofHowells et al. (2010) is based on an earlier model

fromChen et al. (2007a). However, the process of re-naming of species and variables in the derivedmod-

els makes it difficult to verify that each variant correctly recapitulates the structure of the original model

as claimed. For example, in Cui et al. (2008) the authors state simply that the “direct model” was “mainly

based” on the earlier work of Chen et al. (C. Chen et al., 2007b) but we found that there were several

important additions and modifications in the derived model, including addition of displacement, syn-

thesis and degradation reactions and a change in the MOMP pore from a Bax tetramer to a Bax dimer.

Inspection of the PySB source code for the Cui et al. direct model (Cui et al., 2008) (Figure 2.4D) makes

these differences explicit by calling a subroutine for the earlier chen_febs_directmodel (Figure 2.4C)

and adding only the new reactions.

PySB Module Reuse facilitated the process of embedding each of the 15 models of MOMP within

the context of receptor-proximate reactions (ligand binding to Bid cleavage) and downstream reactions

creating “Full Apoptosis” and “MOMP-only” versions (summarized in Table 2.2; see also Methods). We

are currently developing additional apoptosis modules (e.g., alternative topologies for receptor activation

andDISC formation) which will soon be part of the EARM repository; other researchers can also “fork”

the code onGitHub and contribute their own additions. This should allow a cumulative and distributed

approach to model development and comparison.

2.2.5 Embedded Together: an updated and expanded MOMP model

The EARM 2.0 extrinsic apoptosis model incorporating the “Lopez Embedded” MOMP module vari-

ant, denoted EARM 2.0-M1a for short (Table 2.2) implements a mathematical interpretation of recent

experimental findings from Andrews (Leber et al., 2010; Billen et al., 2008) and Green (Llambi et al.,

2011) and differs significantly from previously published models of MOMP (Figure 2.5). Interactions

among Bcl-2 family members occur at the mitochondrial membrane rather than in the cytosol (Lovell
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et al., 2008), and anti-apoptotic proteins are able to bind both the pore-forming proteins such as Bax

and Bak and a larger family of BH3-only Bcl-2 family members, thus serving as dominant-negative ef-

fectors (Leber et al., 2010; Billen et al., 2008). This is also consistent with a recent “Unified Model” by

Green and coworkers demonstrating both “direct” and “indirect” modes of action by the anti-apoptotic

Bcl-2 proteins (Llambi et al., 2011) (Box 2.1). The overlapping binding specificities implied by this model

are summarized in a bind_table call that includes the key effector for extrinsic apoptosis (Bid), two

BH3-only sensitizers (Bad andNoxa), two pore-forming effectors (Bax and Bak) and three anti-apoptotic

proteins (Bcl-2, Bcl-XL, and Mcl-1) along with affinity data obtained from in vitro experiments (Certo

et al., 2006; Willis et al., 2005) (Figure 2.5A). There is some doubt about whether peptide-based affinity

measurements are directly relevant to protein-protein interactions occurring on the membranes of living

cells, and the bind_table macro makes it straightforward to experiment with different values (Figure

2.2C). EARM 2.0-M1a also assumes auto-activation of Bax (and Bak), which has been demonstrated in

multiple experimental contexts (Tan et al., 2006; Gavathiotis et al., 2010).

Our previously published EARM 1.0-1.4 models (Albeck et al., 2008b; Albeck et al., 2008a; Gaudet

et al., 2012; Spencer et al., 2009; Aldridge et al., 2011) assumed that the all-or-none quality of MOMP

arose from the ability of Bcl-2 to bind Baxmonomers, dimers and tetramers (Albeck et al., 2008b). How-

ever, subsequent immuno-precipitation experiments failed to support the existence of such higher-order

hetero-oligomers (Kim et al., 2009). To determine whether the updated reaction topology in EARM

2.0-M1a can reproduce MOMP dynamics measured in single TRAIL-treated HeLa cells using Förster

resonance energy transfer (FRET) reporter proteins (Spencer et al., 2009) we fitted it to data using the

simulated annealing algorithm in SciPy (Methods). We found that EARM 2.0-M1a had as good a fit to

data as previous models (Figure 2.6) and we therefore judge it to be superior to our earlier EARM 1.0

model based simply on better correspondence with prior knowledge. The fitting exercise also demon-

strated that Python numerical tools can efficiently simulate and calibrate PySB models (parameter esti-

mation functions are included in the EARM 2.0 Python package).
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equilibrate(Bid(bf=None, state='T'), Bid(bf=None, state='M'), [1e-1, 1e-3])
equilibrate(free_Bax(state='C'), free_Bax(state='M'), transloc_rates)
equilibrate(BclxL(bf=None, state='C'), BclxL(bf=None, state='M'), transloc_rates)
catalyze(Bid(state='M'), Bax(state='M'), Bax(state='A'), activation_rates)
catalyze(Bid(state='M'), Bak(state='M'), Bak(state='A'), activation_rates)
bind_table([[                      Bcl2,  BclxL(state='M'),  Mcl1(state='M')],
            [Bid(state='M'),         66,                12,               10],
            [Bad(state='M'),         11,                10,             None],
            [Noxa(state='M'),      None,              None,               19],
            [Bax(active_monomer),    10,                10,             None],
            [Bak(active_monomer)   None,                50,               10]],
    kf=1e-3)
catalyze(Bax(active_monomer), Bax(state='M'), Bax(state='A'), activation_rates)
catalyze(Bak(active_monomer), Bak(state='M'), Bak(state='A'), activation_rates)
assemble_pore_sequential(Bax(bf=None, state='A'), 4, pore_rates)
assemble_pore_sequential(Bak(bf=None, state='A'), 4, pore_rates)
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Figure 2.5: Representations of the Bcl-2 interaction topology in the EARM2.0-M1b (“Lopez Embedded”) model. The Bcl-2 interaction

model consists of five basic mechanistic elements or “motifs”—tBid/Bax/BclxL translocation, activation of Bax and Bak by tBid, Bcl-

2 family binding, Bax/Bak autoactivation, and pore assembly—that are highlighted in (A), (B) and (C) according to the colors in the

legend.

(A) PySB source code for themodel, edited for brevity.

(B) Simplified, manually drawn representation.

(C) The full reaction network, generated from the PySBmodel using the PySB render_reactions tool. Rectangles represent
species, circles represent reactions, lines represent reactions with the solid arrowhead representing the nominal forward direction

and the empty arrowhead (for reversible reactions only) representing the reverse direction. Catalytic reactions are depicted with a

boxed arrow pointing from the catalyst to the reaction circle (species for enzyme-substrate complexes are omitted for clarity).

(D)Kappa contact map, which shows the superset of all possible bonds betweenmonomers calculated by static analysis (Danos et al.,

2008). The contact mapwas computed using Kappa’s complx tool accessed through the PySB Kappawrapper library. Rectangles
represent monomers, circles represent sites and lines represent bonds.
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Figure 2.6: Simulated annealing fits for EARM2.0-

M1a for three experimentally measured protein

signals IC-RP/tBid (A), IMS-RP/Smac release (B), and

EC-RP/PARP cleavage (C).Gray lines indicate the

experimental data with error bars indicating the s.d.

In the case of (B), the gray line denotes themean

time of deathTExp
D , used to align the trajectories

(Methods). The orange curves show the simulated

trajectories using nominal parameter values; the

green curves show the simulated trajectories after

model fitting. The objective function for fitting was as

described inMethods.

2.3 Discussion

In this paper we describe the development and use of PySB, a framework for creating, managing and an-

alyzing biological models in which models are full-fledged Python programs. PySB modules and macros

generate BioNetGen Language or Kappa rules, which can be converted into mathematical equations.

This hierarchical process is analogous to the way in which programs are written in a high-level language

such as C++ and converted into microprocessor code by the compiler. This complexity is hidden from

PySB users who work with macro libraries encoding biochemical actions such as “catalyze,” “bind,” “as-

semble,” etc. The advantages of a high-level abstraction layer include greater transparency and intelligi-

bility, a reduction in implementation errors and a dramatic increase in the ability to compare and reuse
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previous work. Each level of representation remains accessible for analysis and there are no explicitly

black-box steps: the Python model code reveals model ontogeny, structure and approach to mechanism;

the BNGL or Kappa rules generated by PySB support agent-based simulation and static analysis; and

equations enable numerical integration, sensitivity analysis, steady-state analysis, etc. Use of familiar but

powerful programming concepts in PySB models such as abstraction, composition, modularity, inheri-

tance, andpolymorphismmake it possible to create variantmodels frompre-existingmodels across several

axes of variation and build newmodels frompreviously tested elements. We expect these features of PySB

to facilitate collaborative model development and evaluation.

PySB draws onwell-established practices in the open-source programming community formodel doc-

umentation and sharing. Because PySB models are programs they can be tracked and shared using the

powerful tools developed for distributed, open-source software development (e.g., all the models in this

paper are available, with documentation, at GitHub; seeMethods). It is simple to update models online,

highlight differences with previous work and divide development among multiple individuals and re-

search teams. Finally, PySB can be used as a general-purpose modeling tool because it interoperates with

diverse scientific applications written in Python (e.g. NumPy, SciPy, SymPy, and Matplotlib). Unlike

conventional all-in-one programs PySB itself tackles only certain steps in the modeling process, relying

on interoperability with programs developed and maintained by others to create a full-fledged solution.

A benefit of this approach is that improvements in any of these programs accrue directly to users of PySB.

ThepowerofPySBderives, inpart, from its ability to encode recurrentbiochemical patterns in reusable

macros (Figure 2.2) and to divide complex networks into modules that are defined once and called when

needed (Figures 2.3B and Figure 2.4C). By eliminating re-implementation, macros and modules sepa-

rate fundamental mechanistic concepts from implementation details and therebymake clear the purpose

and origins of specific model features (Mallavarapu et al., 2009; Gnad et al., 2012; Pedersen and Plotkin,

2008; Mirschel et al., 2009). The ability of real biological networks to be meaningfully decomposed into

functional modules is highly context dependent and a matter of controversy (Del Vecchio et al., 2008)

but there is no requirement that modules in PySB correspond to modules in a biological or “black-box”

engineering sense: the full reaction network is always accessible without simplification. Instead, PySB
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modules are defined according to flexible and convenient organizational boundaries, keeping open the

possibility for crosstalk and emergent interactions with other modules. This style of modularity follows

the open-ended approach of little b (Mallavarapu et al., 2009) and differs from ProMoT, in which mod-

ules interact only through previously designated molecular species (Mirschel et al., 2009). In general

choosing the right boundaries for a module, whether a software program or a biological model, is a mat-

ter of art and practical experience. In the models of extrinsic apoptosis analyzed in this paper, reactions

governing MOMP are a good candidate for modularization because they largely take place in a discrete

compartment (the mitochondrial membrane) and focus on reactions among Bcl-2 proteins.

We have found that PySB naturally supports a hierarchy of modeling concepts (Figure 2.7A). At the

top of this hierarchy are the models themselves, which represent a specific hypothesis about the topology

and activity of a biological system or network; at the bottom of the hierarchy are specific mathematical

equations (e.g. ODEs). Typical approaches to modeling proceed by directly rendering the hypothesis in

equations, making it difficult to discern the assumptions implicit in the process of mathematical trans-

lation (Figure 2.7B). Rule-based approaches represent an intermediate level of abstraction in that they

enumerate local interactions between proteins in a way that is less explicit than equations (Figure 2.7C).

PySB adds an additional layer of abstraction in that the user works with macros and functions (Figure

2.7A; see also Figure 2.2). Sets ofmacros are then grouped into reusable subroutines that implement small

mechanistic “motifs” corresponding roughly to a sentence in a word model, such as “tBid activates Bax

andBak.” Such “motifs” are then composed intomodules, andmodules intomodels. Constructed in this

fashion, a set of variant models forms a “web” of intertwined elements that is largely self-documenting.

2.3.1 PySB as a second-generation approach

PySB is not the first attempt to create a high-level language formodeling biochemistry andwas inspired by

ProMoTand little b,bothofwhich representmodels asLISPprograms (Mirschel et al., 2009;Mallavarapu

et al., 2009). However, as described above, these tools had limited or no support for rule-basedmodeling.

PySB is based on the much more familiar Python language and is interoperable with BNGL and Kappa.

The rule-basedmodeling community is alsodeveloping tools formanaging complexmodels. For exam-
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tBid:Bax >> tBid + aBax Bax + Bcl2 <> Bax:Bcl2

catalyze bind

tBid_activates_effectors sensitizers_bind_antiapoptotics antiapoptotics_bind_effectors

rec_to_bid indirect

Models
mechanistic hypotheses

Modules
self-contained pathways in a model;

paragraphs in a word model

Motifs
small mechanistic elements;
sentences in a word model

Rules
protein-protein interactions

Mathematical representation
equations

EARM 2.0-M2a EARM 2.0-M3a

direct

tBid + Bax <> tBid:Bax

x10x10x2

ODE Model X Rule Model YA B C

Macros
common biochemical processes;

verbs in a word model

Figure 7

Figure 2.7: A conceptual hierarchy for model building with PySB.

(A)Models can be decomposed into a small number of separablemodules;modules can in turn be decomposed into smaller recurrent

mechanistic elements ormotifs.Motifs are collections ofmacro calls (e.g., themotif “tBid activates effectors” consists of two cat-
alyze calls; Figure 2.5A). Eachmacro expands intomultiple rules (Figure 2.2) and rules generate equations (Figure 2.1B).
(B)ODE-based approaches tomodel construction proceed directly from a complex biological system to its mathematical representa-

tion, while (C) rule-based approaches provide one abstraction layer aboveODEs.

ple, MetaKappa targets redundancy inmodels having relatedmolecular species and partially overlapping

functional characteristics (e.g. a set of mutants or isoforms of a single protein) (Danos et al., 2009). The

Language forBiological Systems (LBS) is another approach inwhich rules are combinedwithmethods for

constructing parameterizedmodules (Pedersen and Plotkin, 2008). MetaKappa and LBS are examples of

domain-specific languages (DSLs) for high-level biological modeling, whereas PySB supports high-level

modeling through the structured programming features of Python (Box 2.2). Through Python, PySB

provides substantial flexibility in organizing models. A potential drawback of this flexibility is that static

analysis of models may be more challenging to implement than for DSLs such as MetaKappa or LBS.

For the time being, available static analysis algorithms can be applied to the rules generated from PySB

models (Danos et al., 2008; Feret et al., 2009). We expect the strengths and weaknesses of these different

approaches to become clearer as high-level languages are more widely adopted by the modeling commu-

nity.

Graphical tools represent an alternative approach to making biological models easier to understand.

CellDesigner (Kitano et al., 2005) and BioUML (Kutumova et al., 2012) employ visual interfaces and

graphical languages formodel creation, interpretation, and revision. Our experience has been that purely

visual approaches to model creation do not scale well with model size and are ambiguous with respect to

the underlying biochemical mechanisms. This parallels experience in the software engineering commu-
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nity withUML (UnifiedModeling Language) diagrams: diagrams are a helpful adjunct to programmatic

abstractions but they are not a replacement. This implies that visualizations should be created from an

underlying computable representation and not the other way around; this is the approach taken by the

rxncon software, which uses specialized tables to describe reactions in away that specifically supportsmul-

tiple visualizations (Tiger et al., 2012). However, to be most useful, the computable representation must

be made as transparent as possible: approaches that rely on generated visualizations for transparency are

hard to modify, since changes must be made to the underlying (non-transparent) representation. While

visualization remains important for communicating and describingmodels (Chylek et al., 2011), PySB fol-

lows the common software engineering paradigm in which programmatic abstraction serves as the prin-

cipal tool for managing complexity and visualization serves to illustrate specific properties of a system

(Danos et al., 2008). By way of illustration, we show how a reaction network (Figure 2.5C) and a Kappa

contact map (Figure 2.5D) can be generated from EARM 2.0-M1b (the MOMP-module-only variant of

M1a) and a species graph can be generated for the full EARM2.0-M1amodel (Supplementary Figure S2).

These visualizations proved useful in debugging models during the preparation of this manuscript but

it was the PySB model code that supported straightforward revisions (Figure 2.5A). The code not only

contains more information than the visualizations, but with only 10 macro calls falling into 5 “motifs”

(color-coded regions) it compares favorably with even a simplified, hand-drawn “cartoon” representa-

tion (Figure 2.5B) in terms of intelligibility.

The advantages of using programmatic methods for modeling biological pathways are not necessarily

evident from simple examples in which the underlying equations are self-explanatory (e.g. the “Hello

World” model in Figure 2.1A). This has led some to dispute the value of such methods and to argue that

direct modeling in equations is superior. However, as models become more realistic and complex, equa-

tions rapidly become difficult to understand and errors creep in, a problem that was evident with the

published MOMP models we re-instantiated (Figure 2.4). The advantages of programmatic abstraction

also becomemore evident when a model must be revised or shared, particularly if the original developers

havemoved on to something new. This paper shows howPySB, in combinationwith BNGL andKappa,

goes a long way towards addressing this problem.
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2.3.2 The EARM 2.0 models of extrinsic cell death

One aim of this paper was to create a newmodel of extrinsic apoptosis that incorporated the latest think-

ing on the biochemistry of MOMP while facilitating comparison with previously published models.

EARM 2.0 includes 15 different models for the reactions controlling MOMP, 12 of which were previ-

ously published in five papers and three of which were novel. In general, previously published models

of MOMP do not explore Bcl-2 biochemistry in the context of a complete receptor-to-effector caspase

network. Such models also simplify the biology of Bcl-2 proteins, representing only a subset of the fam-

ily members. We overcame these limitations by modularizing the extrinsic apoptosis pathway and using

composition to embed different MOMP modules within a larger network. Use of the bind_table

macro (for modeling interactions among members of a multi-protein family) made it possible to effi-

ciently encode the differential binding affinities of many Bcl-2 proteins for each other. While the molec-

ular interactions included in our EARM 2.0 models are not comprehensive, the extensible nature of the

PySB representation makes it simple to add additional mechanistic details and species in future work.

One important feature of apoptosis is that MOMP pores do not form until a pro-death stimulus has

been applied at a sufficient concentration for several hours; however, once pores formcells die quickly (Al-

beck et al., 2008b; Goldstein et al., 2000; Rehm et al., 2002). Our original explanation for the all-or-none

regulation of MOMP was that an anti-apoptotic protein such as Bcl-2 or Bcl-XL binds to successively

larger Bax and Bak oligomers, thereby creating a cooperative inverse relationship between Bcl-2 and pore

levels. This idea has not been borne out by experiments and instead it appears that the kinetic proper-

ties of MOMP must arise from the dual affinity of anti-apoptotic proteins for both BH3-only proteins

and pore-forming effectors (Llambi et al., 2011; Billen et al., 2008). We find that an “embedded together”

model (EARM 2.0-M1a) incorporating this revised thinking about Bcl-2 family proteins (Leber et al.,

2010) can reproduce the dynamics of MOMP as measured in single cells using live-cell imaging (Spencer

et al., 2009). An additional round of experimental and computational “model discrimination” studies is

needed to show whether EARM 2.0-M1a is indeed superior to previous models but we prefer it simply

on the basis of its faithful recapitulation of current knowledge.
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2.3.3 PySB as a means to incremental and collaborative model development

One of the key aims for PySB and also for BNGL, Kappa and related meta-languages, is to promote dis-

tributed, incremental and collaborative approaches tomodeling. There are both technical and conceptual

challenges that must be addressed for this to be successful. A significant technical hurdle in model inte-

gration and reuse is the need for a standard nomenclature for model species. The SBML community’s

MIRIAM standard is an essential resource in this regard (Le Novère et al., 2005), but the way in which

rule-based models represent species and complexes will demand a modified approach to annotation. As

a first step we have implemented a basic annotation capability in PySB (see Supplementary Figure S3)

based on MIRIAM-style subject-object-predicate triples that should help resolve naming ambiguities.

However, the fundamental challenge for integrating and reusing models of disparate biological pro-

cesses remains the fact that biological models remain “fit-to-purpose,” focused on addressing specific bi-

ological problems or contexts (Krakauer et al., 2011). PySB does not prescribe “universal” approaches to

representing biological components or processes but instead makes fit-to-purpose modeling more trans-

parent andmanageable through the use of both hierarchical abstractions (Figure 2.7) and tools for docu-

menting, testing, and trackingmodels drawn from software engineering. In the short-term, these features

should allow communities of biologistsworkingon relatedbiological problems towork inparallel toward

shared goals; in the longer-term, real-world experimentation with approaches for collaborative modeling

should yield best practices for building broadly reusable models.

The fact that PySB models are programs allows us to exploit the tools and social conventions of the

open-source software development community for distributedmodel development. In open-source soft-

ware, derivative or variant branches of a source tree can be spun off and then merged into the principal

source tree if desired. Version control systems such asGit allow this process to bemanaged and visualized.

PySBmodels shared via GitHub can have both private and public branches that preserve the integrity of

ongoing model development while allowing for external contributions. Multiple groups can develop

derivative models with confidence that the relationships among variants can be tracked and managed.

SBML versions of PySB models can also be deposited in biomodels.net, supporting current procedures

for indexing, citation, and search. Software tests can be written to ensure that models and modules be-
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have as documented. As models get larger and the scope of the underlying biology exceeds the expertise

of a single modeling team, tools such as PySBwill be needed to create reusable, shareable and transparent

biological models in a distributed manner—a major goal of a systems-level program of biological discov-

ery.

2.4 Methods

2.4.1 PySB code and documentation

PySB is freely available under an open-source BSD license. Links to the GitHub source code repository

as well as documentation and other didactic materials are available at http://pysb.org. The EARM

2.0 models and associated documentation are available along with the data used for model calibration at

http://sorgerlab.github.com/earm. An SBML version of the EARM 2.0-M1amodel is included

in the Supplementary information of the paper.

2.4.2 PySB syntax

PySB implements a syntax for rules based on that of BNGL using classes and overloaded operators from

the Python language, leveraging Python as the language parser. Rule definitions are built up using pat-

terns (represented internally as instances of the classes MonomerPattern, ComplexPattern, and Re-

actionPattern) that specify both a rule’s preconditions and its effects. Site and state conditions for

monomers are specified using an overloaded __call__method for the Monomer class, which takes site

and state conditions as keyword arguments. For example, if L is an instance of Monomer, L(s=’P’)

specifies L with site s having state P. This use of the __call__ method, along with the overloaded op-

erators +, %, >> and <>, allow rules to be specified using a syntax that parallels that of BNGL and Kappa

(Figure 2.1A). See also the “PySB Syntax” section of the Supplementary information.

2.4.3 Component self-export

By default, when a model component is constructed, it is added to the current instance of the Model

class; a variable referring to the newly created component (with a namematching the name passed to the

55

http://pysb.org
http://sorgerlab.github.com/earm


component constructor) is also inserted into the global namespace. This eliminates the need to retain

references to newly created objects and explicitly add them to the model. The “self-export” functionality

is managed by the PySB core class SelfExporter, which identifies the module in which the current

Model instance was declared and adds global variables for components to that namespace. If alternative

approaches to component and model management are desired, the self-export feature can be disabled

by adding the keyword argument _export=False to each component constructor. See also the “PySB

Syntax” section of the Supplementary information.

2.4.4 ODE integration

PySB generates the reaction network through an external call to BioNetGen and extracts the network

graph by parsing the resulting .net file. The network graph is then used to build up the right-hand

sides of the ODEs as Sympy symbolic math expressions containing the appropriate rate constants, mass

action terms and stoichiometric coefficients. If a C compiler is available, the right-hand side function is

implemented in C using scipy.weave.inline; otherwise the right-hand side function is evaluated as

a Python expression. A reference to the right-hand side function is passed to scipy.integrate.ode, a

generic wrapper library for ODE integration routines; for this work we used the FORTRAN integrator

VODE (Brown et al., 1989).

2.4.5 Conversion of published models to PySB

For themodels lacking an electronic version (C. Chen et al., 2007a; C. Chen et al., 2007b; Cui et al., 2008;

Howells et al., 2010), theODEs generated by the PySB versionsweremanually validated against theODEs

listed in the original publications. In the case of the threemodels with errors in the publishedODEs (Cui

et al., 2008) (see Supplementary note) the PySB versionwas written to generate theODEs corresponding

to the described reaction scheme without these errors. For the models for which we had access to the

original MATLAB code (Albeck et al., 2008b), the PySB versions were also programmatically validated

against the output from the published versions.
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2.4.6 Modularization of MOMP models

EachMOMP-onlymodel (Table 2.2) was written to have the addition of tBid as its most upstream event,

and the release of cytochrome c and Smac as its most downstream event. In some cases these default

boundaries did not match the boundaries for the MOMP module in the original publications: Albeck

et al. had the addition of active caspase-8 as the most upstream event (Albeck et al., 2008b), while the

Shen/Howells groupmodels had Bax oligomerization (rather than Smac release) as themost downstream

event (C. Chen et al., 2007a; C. Chen et al., 2007b; Cui et al., 2008; Howells et al., 2010). In these cases,

the networks of the original models weremodified to achieve consistent boundaries across modules. The

boundaries of the original models can nevertheless be reproduced through the use of optional arguments

to the module subroutines that add or remove reactions as appropriate.

2.4.7 Simulation and parameter estimation

Simulations were carried out using the VODE integrator via the SciPy library using Newton’s method

for root evaluations and the backward differentiation formula (BDF) integration method. Absolute and

relative tolerances were set to 10−5. Parameter estimation was performed using the simulated anneal-

ing routine implemented in scipy.optimize.anneal with an appropriately defined objective func-

tion (described below). Nominal values for rate constants for the DISC and PARP modules were set to

their published values in EARM 1.0; rate constants for the MOMP module were drawn from Certo et

al. (2006), Willis et al. (2005), or set to values from similar rates from EARM 1.0. During the annealing

process all rate constraints were allowed to vary two orders of magnitude above and below their nominal

values (i.e., 0.01x – 100x); initial protein concentrations were held fixed and not estimated.

Trajectories for the initiator caspase reporter protein (IC-RP),mitochondrial inter-membrane space re-

porter protein (IMS-RP) and effector caspase reporter protein (EC-RP) were used from previously pub-

lished data (Spencer et al., 2009). In themodel, truncated Bid, cytosolic Smac, and cleaved PARPwere fit

to the data for IC-RP, IMS-RP, andEC-RP, respectively. IMS-RPdata from ten cells indicated an average

MOMP time of 9810 s ± 2690 s after the exposure of the cells to ligand. The IC-RP and EC-RP signals

were normalized and aligned to this MOMP time to yield an average trajectory for each. The objective

57



function used to calculate model fit was the sum of component functions for each of the experimental

observables as follows:

ObjTotal(
⇀

k ) = ObjICRP(
⇀

k ) + ObjIMSRP(
⇀

k ) + ObjECRP(
⇀

k )

where
⇀

k = k1, k2, . . . , kn are the rate parameters for the system of ODEs, andObjICRP(
⇀

k ),ObjIMSRP(
⇀

k ),

and ObjECRP(
⇀

k ) are the objective functions for corresponding observables. These objective functions

were defined as follows:

ObjICRP(
⇀

k ) = 1
N

N∑
t=1

[
tBidt(

⇀
k )

Bid0 − ⟨ICRPt⟩
]2

2 · Var(ICRPt)

where N = 112 is the number of experimental timepoints, tBidt(
⇀

k ) is the simulated value of truncated

Bid at time t (with the given parameters, k), Bid0 is the total amount of Bid in the simulation, and ICRPt

is the distribution of MOMP-aligned experimental IC-RP trajectories at time t. The objective function

for EC-RPwas defined similarly, but with cleaved PARP in place of truncated Bid and EC-RP in place of

IC-RP:

ObjECRP(
⇀

k ) = 1
N

N∑
t=1

[
cPARPt(

⇀
k )

PARP0
− ⟨ECRPt⟩

]2
2 · Var(ECRPt)

Data from previous experiments showed that release of IMS-RP frommitochondria due toMOMP is

both rapid and complete under all tested experimental conditions, typically reaching completion within

1-3 minutes (Albeck et al., 2008a). To ensure that the model could reproduce these kinetics, we used an

alternative objective function for the cSmac/IMS-RP signal to consider the onset (TD) and duration (TS)

of MOMP:

ObjIMSRP(
⇀

k ) = 1
3


(
TSim

D − ⟨TExp
D ⟩
)2

2 · Var
(
TExp

D

) +

(
TSim

S − ⟨TExp
S ⟩
)2

2 · Var
(
TExp

S

) +

(
cSmacN
Smac0 − 1

)2

2 · 10−6


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TExp
D is the experimental “death time,” recorded as the time of MOMP as measured by IMS-RP release;

TExp
S is the experimental “switching time,” defined as the time required for IMS-RP to be released, esti-

mated to have a mean value of 180 sec and a variance of 3600 sec2. The corresponding simulated values

were defined as

TSim
D =

T90 + T10

2

TSim
S = T90 − T10

whereT90 andT10 are the times taken by the simulation to reach 90% and 10% ofmaximum Smac release,

respectively. The final term inObjIMSRP(
⇀

k ) constrains the simulated Smac trajectory to achieve approxi-

mately 100% release: cSmacN is the final simulated value of cytosolic Smac, and Smac0 is total Smac.
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Supplementary note

In examining the differential equations for the models in Cui et al. [1], we found the following two
errors.

Misplaced consumption term for activator

The reaction for the activation of Bax is described in Table 1 of [1] (“Chemical reaction network
scheme”) as

InBax + Act→ AcBax + Act

In the list of ODEs provided in Table 2, the term describing the velocity of this reaction is listed
(correctly) as

J1 = k1 · [InBax] · [Act]

The term J1 appears in the following equations shown in Table 2 (some terms omitted for clarity):

d[InBax]/dt = JInBax − J1 − J9
d[AcBax]/dt = JAcBax + J1 − J2 − . . .

d[Act]/dt = JAct − J1 − J3 + . . .

The error is that J1 appears as a negative term in the equation for [Act], implying that activator
is actually consumed in the reaction InBax + Act→ AcBax + Act. However, because this is a
one-step “catalytic” reaction, with no intermediate complex formed, activator should not be
consumed.

An additional indication that this an error is that in the equations for the “Direct” model from
Chen et al. [2], on which the Cui et al. [1] models are based, the equation for Activator does not
have this negative term. The appearance of this error in the derived model, but not the original
model, highlights the tendency of “copy-and-paste” model reuse to introduce inadvertent errors.

Missing term for Bax inactivation

The reaction for Bax inactivation is listed in Table 1 of Cui et al. [1] (“Chemical reaction network
scheme”) as

AcBax→ InBax

In the list of ODEs provided in Table 2, the term describing the velocity of this reaction is J5:
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J5 = k8 · [AcBax]

J5 appears correctly as a negative term in the equation for activated Bax:

d[AcBax]/dt = JAcBax + J1 − J2 − J4 − J5 + J8 − J9 − 2 · J10

However, the equation for inactive Bax omits J5 completely, where it should be incorporated as a
positive term:

d[InBax]/dt = JInBax − J1 − J9

This means that active Bax is consumed with the rate defined by J5, but the corresponding
quantity of inactive Bax is not restored, leading to a loss of Bax over time. As with the error in
the equation for Activator described above, the equation for Bax is correct in the original model
from Chen et al. [2], indicating that the error was likely introduced in the process of duplicating
the original model, or in the transcription of ODEs for publication.
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PySB syntax

PySB model definition statements support some idiomatic syntax elements which may appear
unusual to a Python programmer, but which provide economy of expression and a close mapping
to the syntax of established rule-based modeling languages BNGL and Kappa. PySB defines
overloaded operators and a so-called “SelfExporter” system which help give PySB model
definition statements the feel of a domain-specific language like BNGL or Kappa within the
general-purpose Python programming langage. Modelers are not required to use the overloaded
operators and SelfExporter functionality, but they are highly recommended for ease of readability.

Overloaded operators simplify rule expression syntax

Python’s built-in operators generally work with just a small set of built-in types, and an
exception will be raised if they are applied to objects of any other class. For example “+” applies
to numeric types (implementing mathematical addition), and separately to lists and strings
(implementing concatenation). However a class may implement several special methods to
overload these operators and allow them to be applied to its instances. A class is free to define
any desired semantics in its overloaded operator implementations, but operator precedence and
arity is fixed by the Python language grammar and cannot be altered via operator overloading.

PySB defines several classes representing nodes in an abstract syntax tree (AST) representation
of a rule in the BNGL/Kappa domain-specific languages (DSL). These classes define overloaded
operators allowing a modeler to write a Python expression which is visually very similar to one of
these rules and evaluates to the corresponding AST. Whereas BNGL and Kappa use a standalone
program to parse and simulate a model defined in a DSL, The PySB AST classes with operator
overloading allow model components to be declared with Python program statements which
evaluate directly to object representations of the given components. In this way Python itself
serves as the parser for PySB models, and model components become live Python objects. The
following table lists the AST classes and the syntactic elements they represent:

Class Description

MonomerPattern A pattern which matches instances of a given monomer, with optional re-
strictions on the state of certain sites.

ComplexPattern A bound set of MonomerPatterns, i.e. a pattern to match a complex.
ReactionPattern A pattern for the entire product or reactant side of a rule.
RulePattern A container for the reactant and product patterns of a rule expression.
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The operators to overload were chosen to fulfill two requirements. First, they must have the
proper relative precedence in the Python grammar to minimize the need for parentheses and keep
rule expressions uncluttered. Second, they should have a visual appearance as close as possible to
the operators used in BNG and Kappa to help maintain consistency within the rule-based
modeling ecosystem. The following table lists the overloaded operators and their semantics:

Operator Description

( ) Apply site conditions to a Monomer to create a MonomerPattern
% Combine MonomerPatterns to create a ComplexPattern
+ Combine ComplexPatterns to create a ReactionPattern
<> Combine two ReactionPatterns to create a reversible RulePattern
>> Combine two ReactionPatterns to create an irreversible RulePattern

For those who are familiar with BioNetGen Language (BNGL), here are some actual expressions
in both PySB and BNG syntax (Kappa is similar to BNGL):

PySB expression BNGL equivalent

R(a=None) R(a)
R(a=1) % R(b=1) R(a!1).R(b!1)
R(a=None) + R(b=None) R(a) + R(b)
R(a=None) + R(b=None) <> R(a=1) % R(b=1) R(a) + R(b) <-> R(a!1).R(b!1)
R(a=None) + R(b=None) >> R(a=1) % R(b=1) R(a) + R(b) -> R(a!1).R(b!1)
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Below is a formal grammar for PySB rule expressions. Symbols corresponding to the Python AST
node classes are shown in bold, using the actual class name. Symbols which are self-explanatory
such as “site-name” and “string” are not expanded further.

〈MonomerPattern〉→ 〈monomer〉 ‘(’ 〈site-conditions〉 ‘)’

〈site-conditions〉 → 〈site-name〉 ‘=’ 〈condition〉 ‘,’ 〈site-conditions〉
| 〈site-name〉 ‘=’ 〈condition〉
| φ

〈condition〉 → 〈string〉
| 〈bond-number〉
| ‘(’ 〈bond-number-list〉 ‘)’
| ‘(’ 〈string〉 ‘,’ 〈bond-number〉 ‘)’

〈bond-number-list〉 → 〈bond-number〉 ‘,’ 〈bond-number〉
| 〈bond-number-list〉 ‘,’ 〈bond-number〉

〈ComplexPattern〉 → 〈ComplexPattern〉 ‘%’ 〈ComplexPattern〉
| 〈MonomerPattern〉

〈ReactionPattern〉 → 〈ReactionPattern〉 ‘+’ 〈ReactionPattern〉
| 〈ComplexPattern〉

〈RulePattern〉 → 〈ReactionPattern〉 〈rule-op〉 〈ReactionPattern〉

〈rule-op〉 → ‘<>’ | ‘>>’
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Excessive or haphazard use of operator overloading can certainly lead to confusing code, but we
felt the construction of rule ASTs was a reasonable application with a limited scope. For
comparison, here are several PySB rule expressions written using both overloaded operators and
explicit AST assembly. The explicit forms of the first four subexpressions look simple enough in
isolation, but the economy of the overloaded operators becomes readily apparent upon
considering the final full RuleExpression.

Operators Explicit AST assembly

mp = R(a=1) mp = MonomerPattern(R, {’a’: 1})
cp = mp1 % mp2 cp = ComplexPattern([mp1, mp2])
rp = cp1 + cp2 rp = ReactionPattern([cp1, cp2])
re = rp1 <> rp2 re = RuleExpression(rp1, rp2, True)
R(a=None) + R(a=None) <> R(a=1) % R(a=1) RuleExpression(

ReactionPattern([
ComplexPattern([
MonomerPattern(R, {’a’: None})

]),
ComplexPattern([
MonomerPattern(R, {’a’: None})

])
]),
ReactionPattern([
ComplexPattern([
MonomerPattern(R, {’a’: 1}),
MonomerPattern(R, {’a’: 1})

])
]),
True

)

SelfExporter functionality streamlines model construction

PySB also includes functionality to streamline the process of creating components and adding
them to models, using a class called SelfExporter. Like all object constructors in Python, each
of the component constructors (Monomer, Rule, Parameter and Compartment) return an
instance of the requested component. In a typical programming paradigm, it would be necessary
to explicitly retain a reference to the created object in a variable for later use. For example,
creating a monomer “R” and parameter “kf” for use in a rule declaration would require the
following statements:

R = Monomer(’R’, [’a’])

kf = Parameter(’kf’, 1)

dimerize = Rule(’dimerize’, R(a=None) + R(a=None) >> R(a=1) % R(a=1), kf)

Here the Monomer constructor is used to create an instance of a Monomer object named “R”,
stored in the local variable R. From a modeling perspective, one can immediately see a potentially
confusing aspect of this approach: we now have to mentally keep track of two “names” for the
same monomer, one the variable storing the reference to the object (R, which must be used to
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build up the expression for the dimerization rule) and one the descriptive name assigned to the
new object (“R”). Even though we have chosen to use the same name for both the object’s
descriptive name and its variable in order to minimize confusion, maintaining this consistency
requires mental effort on the part of the modeler and clutters the code making it harder to read.

In addition to managing the issue of naming, we must also add the newly created Monomer,
Parameter and Rule objects to a model. To do this, we must call the model.add component

method on each component object:

model = Model(’model’)

model.add_component(R)

model.add_component(kf)

model.add_component(dimerize)

This repetition adds further visual noise to the model code, and accidentally omitting the
add component call for one or several components can lead to errors far from the site of
declaration (in the case of a Monomer or Parameter used in a distant Rule) or worse, subtle
errors in model behavior (in the case of a Rule).

In a typical modeling scenario, creation of model components tends to follow the pattern
described above, that is:

1. Create a component using the appropriate constructor and assign it to a variable in the
current namespace.

2. Add the created component to the current model.

The repetition of this pattern for every component in a model tends to be verbose and obscure
the model structure; it also creates opportunities for error as described above.

PySB includes a helper class called SelfExporter that streamlines model definition by
automatically performing the above steps. Using the functionality provided behind the scenes by
SelfExporter, we can now simply write:

Model(’model’)

Monomer(’R’, [’a’])

Parameter(’kf’, 1)

Rule(’dimerize’, R(a=None) + R(a=None) >> R(a=1) % R(a=1), kf)

In the above example, when the constructor Model(’model’) is called, the SelfExporter

“exports” a reference to the model by creating a global variable called model in the current
namespace and assigning a reference to the created Model object to it. (This is possible because by
using the Python module inspect, global variables in any accessible namespace can be accessed
and manipulated programmatically: they are stored as a dictionary linking the name of the
variable (“model”) to its value (a reference to the new Model object). The SelfExporter can add
global variables by modifying the entries in this dictionary.)
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When the second statement, Monomer(’R’, [’a’]), is executed, the SelfExporter performs a
similar action: it creates a new variable, R, and assigns to it the reference to the new object (a
Monomer object given the name “R”). However, in this case it also takes a second action: it adds
the new Monomer object R to the set of Monomer objects associated with the currently defined
model, model. The process for the Parameter object is exactly the same: a global variable kf for
the new object is created and added to model.

Finally, because they have been “exported” as variables by the behind-the-scenes action of the
SelfExporter, the Monomer variable R and the Parameter variable kf are now globally accessible,
and we can use both in the Rule(...) definition that follows. The Rule object itself is similarly
exported and added to the model.

To summarize, the execution of the above code results in:

• The addition of four variables to the global namespace: model, R, kf, and dimerize

• The addition of the model components R, kf, and dimerize to the model model.

It should be noted that though it is the default behavior, the use of SelfExporter functionality
is entirely optional. In certain sophisticated modeling scenarios involving the dynamic creation of
multiple alternative models, the explicit approach to component creation and assignment may be
preferred. However, we have found that the SelfExporter substantially simplifies the most
common modeling use cases. A summary of the syntax for the simple example described above,
with and without the action of SelfExporter, is shown below:

With SelfExporter Without SelfExporter

Model(’model’) model = Model(’model’)
Monomer(’R’, [’a’]) R = Monomer(’R’, [’a’])

model.add component(R)
Parameter(’kf’, 1) kf = Parameter(’kf’, 1)

model.add component(kf)
Rule(’dimerize’,

R(a=None) + R(a=None) >> R(a=1) % R(a=1),
kf)

dimerize = Rule(’dimerize’,
R(a=None) + R(a=None) >> R(a=1) % R(a=1),
kf)

model.add component(dimerize)

The following comparison with the BNGL syntax for the same simple model shows how the
combined use of overloaded operators and the SelfExporter give models written in PySB the feel
of a domain-specific language embedded in Python:
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PySB statement BNGL equivalent

Model(’model’) (not needed)
Monomer(’R’, [’a’]) begin molecule types

R(a)
end molecule types

Parameter(’kf’, 1) begin parameters
kf 1

end parameters
Rule(’dimerize’,

R(a=None) + R(a=None) >> R(a=1) % R(a=1),
kf)

begin reaction rules
dimerize: R(a) + R(a) -> R(a!1).R(a!1) kf

end reaction rules
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Figure S1

def catalyze_one_step(enz, sub, prod, kf):
    # Create the rule
    r = Rule('catalyze_one_step_%s_%s_to_%s' %
          (enz.monomer.name, sub.monomer.name, prod.monomer.name),
          enz() + sub() >> enz() + prod(),
          kf)
    return r

catalyze_one_step(C8(bf=None), Bid(state='U', bf=None),
                  Bid(state='T', bf=None), kf)  

Example Macro Call

Basic Implementation

BNGL Rules

ODEs

C8(bf) + Bid(bf,state~U) -> C8(bf) + Bid(bf,state~T)  kf

C8:   ds0/dt =  0
Bid:  ds1/dt = -kf*s0*s1
tBid: ds2/dt =  kf*s0*s1

def catalyze(enz, e_site, sub, s_site, prod, klist):
    kf, kr, kc = klist   # Get the parameters from the list
    
    # Create the rules
    rb = Rule('bind_%s_%s' % (enz().monomer.name, sub().monomer.name),
           enz({e_site:None}) + sub({s_site:None}) <>
           enz({e_site:1}) % sub({s_site:1}),
           kf, kr)
    rc = Rule('catalyze_%s%s_to_%s' %
           (enz().monomer.name, sub().monomer.name, prod().monomer.name),
           enz({e_site:1}) % sub({s_site:1}) >>
           enz({e_site:None}) + prod({s_site:None}),
           kc)
    return [rb, rc]

Basic Implementation

A) catalyze macro basic implementation

B) catalyze_one_step macro

(A) Simplified implementation of the catalyze macro. The Rule objects for the binding and catalytic steps
are created according to defined templates, with the species identities (enzyme, substrate, and product),
binding site names, and parameters filled in from the arguments to the macro. (B) catalyze one step.

This macro models a “one-step” approximation of catalysis according to the reaction scheme E+S → E+P .
The macro creates a single catalysis rule according to the prescribed template, which can then be used to
generate the BNGL rule and set of ODEs shown below. The full implementation of the catalyze and
catalyze one step macros, with documentation and handling of various special cases, can be found in the
macros.py file in the PySB source code online (http://pysb.org).
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Figure S2
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Output from the PySB render species tool run against EARM 2.0-M1a (Lopez Embedded). Each large
box represents one species, with its number and PySB representation at the top, followed by a depiction of
the monomer graph. In the monomer graph, each segmented box represents a monomer, with its name in
the first green segment and its sites in the following segments. Edges between monomer sites represent
bonds, and their numeric labels correspond directly to the bond numbering in the PySB representation
above.
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What makesMichaelis andMenten’s model so significant

was not that it fits the experimental data, but that it pro-

vides evidence for something unseen.

Jeremy Gunawardena (Gunawardena, 2012)
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Abstract

Mitochondrial outer membrane permeabilization is a key checkpoint in apoptosis determining whether

cells live or die, but the dynamics and ordering of the steps leading to pore formation are not well charac-

terized. In this study we use kinetic analysis of a reconstituted protein-membrane system to characterize

the dynamics of the structural rearrangements of the pore-forming effector Bax as it undergoes activation

by either cBid or Bim, followed by membrane insertion and pore formation. Using site-specific labeling

of different regions of the protein with the environmentally sensitive dye NBD, we find that the protein

undergoes a rearrangement through at least one structurally distinct intermediate en route to the final in-

serted state. This intermediate involves transient increases in the hydrophobicity of residues in the BH3

region and is a necessary precursor to pore formation. FRET measurements indicate that the initial con-

formational change of Bax corresponds closely to the formation of the Bax:BH3-only activator complex,

while the second transition corresponds to the formation of Bax oligomers. While this sequence of rear-

rangements for Baxwas the same for activation by both cBid andBim, cBid appeared to undergo a second

rearrangement relative to Bax whereas Bim did not. To determine whether the pore-forming intermedi-

ate we identified has functional significance, we prepared mutants of Bax identified from cancer genome

sequencing and characterized them in our in vitro system. We found that three cancer-associated mu-

tants appeared to be trapped in the intermediate state with diminished pore formation, suggesting that

transitions into and out of this intermediate can be modulated independently with consequences for the

execution of apoptosis. The accompanying dataset, involving corresponding dye release, Bax insertion,

and FRET timecourses between Bax and activators Bid and Bim, is provided in a variety of formats for

reuse and re-analysis.
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3.1 Introduction

Apoptosis is a biochemically programmed cell death pathway that governs when and how cells die in

response to internal or external stress stimuli. A key step in this process ismitochondrial outermembrane

permeabilization, or MOMP, in which pores form in the mitochondrial outer membrane and release

pro-apoptotic proteins, such as cytochrome c and Smac, into the cytosol (Tait and Green, 2010). These

proteins activate a family of proteases known as caspases, which trigger the rapid degradation of cellular

components. The processes downstream of MOMP are in general rapid and complete, making MOMP

itself a key regulator of cell fate (Albeck et al., 2008; Goldstein et al., 2000; Rehm et al., 2002). Functional

studies have shown that the tendency of mitochondria derived from cell lines and tumor cells to undergo

MOMP correlates strongly with cell death in response to cytotoxic chemotherapy and ultimately, clinical

outcomes (Chonghaile et al., 2011; Vo et al., 2012).

MOMP is regulated by a set of evolutionarily related proteins known as the Bcl-2 family, which are re-

sponsible for activating, inhibiting, and forming thepores in themitochondrial outermembrane (Chipuk

et al., 2010). Anti-apoptotic family members include the known oncogenes Mcl-1, Bcl-XL, and Bcl-2;

pro-apoptotic members are divided into the “effectors” Bax and Bak, which form the pores in the mi-

tochondrial membrane, and the larger group of “BH3-only proteins,” which are so called because they

share only the third of the four Bcl-2 homology (BH) regions with the other family members. The BH3-

only proteins promote apoptosis by both inhibiting the anti-apoptotic family members and activating

the pore-forming effectors, though with differential affinity and specificity (Letai et al., 2002; Certo et al.,

2006). A number of chemical modulators of the Bcl-2 family members have been developed, including

inhibitors of the anti-apoptotic members (Oltersdorf et al., 2005; Souers et al., 2013; Leverson et al., 2015)

and agonists of the pro-apoptotic effectors (Gavathiotis et al., 2012).

Much is now known about the structural basis of Bcl-2 protein interactions, and this knowledge has

proven essential to the efforts to develop targeted therapeutics. Prior to activation, a fraction of Bax

binds transiently to membranes but it is predominantly cytosolic (Yethon et al., 2003). In this soluble

conformation, the hydrophobic groove of Bax is occluded by theC-terminal α9 helix (Suzuki et al., 2000).

Engagement of a BH3-only protein such as Bim at a “trigger site” on the rear surface of the protein leads to

87



displacement of the C-terminal helix, exposure of the 6A7 epitope, and membrane insertion (Kim et al.,

2009; Gavathiotis et al., 2010). Other studies have shown that binding of the BH3-only protein to the

hydrophobic groove is a necessary step for activation and insertion of Bax (Dai et al., 2011; Czabotar et al.,

2013).

Several recent structural studies have given a clearer picture of the arrangementofBax andBakmolecules

at the assembled pore. The dimerization interface of Bax has beenmapped bymutagenesis (George et al.,

2007), and recent studies have suggested that Bax dimerization involves symmetric binding via the BH3

region and hydrophobic groove in a fashion similar to how these proteins bind with anti-apoptotics (Cz-

abotar et al., 2013; Bleicken et al., 2014).

Despite this new information, a number of important questions regarding apoptotic pore formation

remain. Existing studies based on static or equilibrium measurements offer insight into the structure of

the assembledporebut less information about thenature of any intermediate conformations takenbyBax

or Bak. Conversely, kinetic studies have clarified aspects of the sequence of steps taken en route to pore

formation, but lack structural information about the conformational states of Bax during this process

(Lovell et al., 2008; Kushnareva et al., 2012; Saito et al., 2000). What is needed is a dynamic picture of the

process by which Bax goes from the aqueous state to the assembled pore, using full-length proteins and

membranes.

An additional question pertains to the interaction between Bax and its BH3-only activators during

activation and pore formation. While it has been shown that tBid remains bound to Bax at equilibrium,

the significance of this post-activation complex is unknown (Lovell et al., 2008; Kim et al., 2009). In

addition, because several of the existing structural studies have used a variety of methods for activating

Bax (e.g., BH3 peptides vs. full-length BH3-only proteins and liposomes vs. CHAPS detergent), it is

unclear whether the particular rearrangements of Bax are contingent on the activator used.

In this studyweuse kinetic analysis of a reconstituted system to characterize the conformational changes

of Bax en route to pore formation. We accomplish this by labeling the protein at 19 positionswith an envi-

ronmentally sensitive dye that reports on membrane insertion, complemented by intermolecular FRET

to determine the timing of protein-protein interactions. We analyze the approximately 400 experimental
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timecourses using a set of kinetic models that allows us to identify the number and timing of conforma-

tional changes. We find that Bax transitions rapidly to an intermediate associated with binding of cBid

or Bim, followed by a slower transition associated with Bax dimerization and pore formation. Mutations

found in cancer cells can trap Bax in this intermediate, preventing MOMP. The accompanying dataset,

involving corresponding dye release, Bax insertion, and FRET timecourses between Bax and activators

cBid and Bim, is provided in a variety of formats along with source code at https://github.com/

johnbachman/tbidbaxlipo. Plots of raw and processed data can be accessed in the Supplementary

OnlineMaterial (SOM)athttp://sorger.med.harvard.edu/data/bachman/kale/index.html.

3.2 Results

To characterize the structural rearrangements associated with Bax insertion and oligomerization, we gen-

erated a set of Bax mutants labeled with the environment-sensitive dye NBD. Because NBD fluorescence

increases in a hydrophobic environment, the NBD-labeled Bax mutants can be used to track the rate and

extent of membrane insertion and other structural rearrangements kinetically (Lovell et al., 2008). Site-

specific NBD labeling of the protein was accomplished bymutating the two endogenous cysteines of Bax

to serine and introducing single cysteinemutations at other positions (Methods). In total, 19 Baxmutants

were purified and labeled with NBD, with the labeled positions spanning the N-terminus, BH3 region,

pore-forming helices (α5 and α6), and C-terminus (α9) (Figure 3.1A-B). NBD labeling efficiency ranged

from 56% to 92%, with most mutants over 75% (SOM Section 2).

We incubated themutantswith synthetic liposomes and aBH3-only activator (cBidorBim) and tracked

the kinetics ofNBD-Bax fluorescence and liposome permeabilization simultaneously using amultiplexed

fluorescence spectroscopy approach described previously (Figure 3.1C) (Lovell et al., 2008; Kale et al.,

2014). For each condition, three replicate timecourses were collected, each using liposomes from separate

preparations. The initial kinetic dataset consisted of 20 Bax alleles × 2 activators × 3 replicates = 120 dis-

tinct kinetic experiments, with two fluorescence channels for each of the 19mutants (NBD and terbium),

for a total of 234 kinetic curves.

As measured by dye release at the 1 hr endpoint, two thirds of the mutants had approximately wild-
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Figure 3.1: Assaying dye release and confor-

mational changes of labeled Baxmutants.

(A) Primary and secondary structure of Bax.

(B) Solution structure of Bax (PDB ID: 1F16)

with positions of engineered cysteinemuta-

tions used for dye labeling.

(C)Design of multiplexed fluorescence spec-

troscopy assays. A BH3-only activator (which

in some experiments is labeled with the flu-

orescence donor DAC) is added to a solution

of synthetic lipid vesicles that contain the

fluorescent ion terbium and allowed to equi-

librate. NBD-labeled Baxmutants are then

added and fluorescence timecourses are

recorded. Pore formation is measured as

a decrease in terbium fluorescence as it is

released into the solution, which contains its

quencher EDTA; Bax conformational changes

andmembrane interactions are indicated

by the fluorescence changes of NBD-Bax;

and interactions between Bax and its ac-

tivators are given by the quenching of the

DAC-labeled BH3-only protein by NBD-Bax.

(D) Endpoint dye release activity of the NBD-

labeled Baxmutants activated by either

unlabeled cBid or Bim, normalized to the

activity of wild-type Bax.

(E) Endpoint NBD-Bax fluorescence intensi-

ties after activation by either unlabeled cBid

or Bim, relative to the initial intensityF1.
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type levels of activity (80% or more); a subset of mutants was slightly less active (SOM Section 1.1). The

kinetic curves can be inspected in the plots in SOM Section 3.1.

3.2.1 NBD-labeledBaxmutantsundergodistinctchanges inhydrophobicity indicat-

ing widespread conformational change

The labeled mutants exhibited a variety of NBD fluorescence intensities at the timecourse endpoint, in-

dicative of themembrane-bound conformation of Bax in assembled pores (Figure 3.1D). Consistent with

prior studies, the α5 residues 120, 122, and 126 as well as the C-terminal residues 175 and 179 had highNBD

fluorescence values, suggestive of membrane insertion (Annis et al., 2005; Westphal et al., 2014). How-

ever, since the NBD fluorescence is influenced not only by interactions with membranes but also by the

side chains of neighboring amino acids and other intramolecular effects, it is an incompletemeasure of the

degree of conformational change. The relative NBD fluorescence values, which indicate the fold-change

in NBD fluorescence at the labeled residue relative to the initial aqueous state, are shown in Figure 3.1E;

a value greater than one indicates an increase in fluorescence, and thus hydrophobicity; a value less than

one, a decrease. All labeled residues showed a relative increase in NBD fluorescence at equilibrium, with

the exception of the mutant labeled at position 47, which decreased. A number of residues, including

15, 62, 184, and 188, had relatively low absolute NBD fluorescence but large relative fluorescence changes,

indicating that the rearrangements of Bax during pore formation encompass most regions of the protein,

not only those in the pore-forming and C-terminal helices.

3.2.2 The kinetics of NBD fluorescence changes for BH3 residues suggest an inter-

mediate conformational state

To investigate the dynamic rearrangements of Bax occurring during activation and pore formation we

examined the kinetics of NBD fluorescence changes. Our expectation, based on a previous study using

NBD-126C-Bax, was that each mutant would exhibit single-exponential kinetics that would allow each

residue to be ranked in order of its insertion timescale, thereby describing an insertion “pathway” (Lovell

et al., 2008).

Thekinetic data showed that themutants haddistinct rates anddynamics ofNBDfluorescence changes,
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Figure 3.2: Kinetics of NBD fluorescence changes.

(A) Example NBD-Bax fluorescence timecourses, normalized to the initial fluorescence F0. Each of the six timecourses shown used

cBid as the BH3-only activator and is the first of three replicates.

(B) Percentage of maximumNBDfluorescence reached at an early timepoint (105 sec), plotted against the amount of dye release

relative to wild-type Bax, using cBid as the activator.

(C)As for (B), but using Bim as the activator.

(D)Derivatives of NBD and terbium release timecourses for NBD-15C-Bax (first replicate, cBid as activator), normalized to themax-

imum rate of change. Derivatives were calculated numerically after processing the curves with a low-pass filter to reduce noise. The

curves shownwere for the first experimental replicate with cBid as the activator.

(E)As for (D), but for NBD-54C-Bax (first replicate, cBid as activator). The vertical grey line is drawn at the peak rate of change of

terbium release.

falling into two classes depending on the location of the label. While the majority of the residues showed

monotonic increases in fluorescence similar to what we had observed previously, three residues near the

BH3 region (54, 68, 79) showed a transient peak in fluorescence followed by a decline towards the equi-

librium value (Figure 3.2A). The rates of fluorescence change varied among the mutants with mono-

tonic kinetics, with some (e.g., NBD-3C-Bax) approaching their equilibrium value rapidly and others

(e.g., NBD-179C-Bax) much more slowly (Figure 3.2A). As a measure of the differences in NBD kinetics

across all mutants we calculated the extent to which the relative NBD fluorescence had attained its max-

imal value at an early timepoint (105 sec) and found it to vary considerably among the labeled residues

(SOM Section 1.1).
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A corresponding analysis of dye release levels at the same early timepoint showed that the mutants

were also highly variable in their overall rates of pore formation, preventing a straightforward comparison

of NBD insertion timescales (SOM Section 1.1). Most Bax mutants, including those that had endpoint

release activity similar to wild-type, showed accelerated dye release kinetics, suggesting that for manymu-

tants the addition of the NBD label preserved Bax’s pore formation activity but destabilized the protein

by reducing energy barriers between its conformational states.

To assess the contribution of activity differences to the rates of NBD fluorescence change, we plotted

the NBD kinetics data against the dye release data for the 105 sec timepoint and found that the residues

fell into a set of two classes (Figures 3.2B-C). For residues outside the BH3 region, faster rates of NBD

fluorescence change corresponded to faster rates of dye release in a roughly linear pattern, suggesting that

most of the differences inNBD fluorescence at 105 seconds could be explained via differences in dye release

activity resulting from theNBD label. However, residues in or near the BH3 region, including 54, 62, 68,

and 79, showed significant early NBD fluorescence changes that differed considerably from what would

be expected due to activity differences alone. This suggests that the rapid increase in the fluorescence of

these labeled residues is due to a structural rearrangement that precedes dye release.

To further analyze the timing of NBD fluorescence changes relative to dye release, we calculated the

derivatives of both curves (SOM Section 3.3). While the rate of change of NBD fluorescence is almost

invariably fastest at the initial timepoints, the rate of change of dye release reaches a maximum before

declining to zero at equilibrium (shown forNBD-15C-Bax in Figure 3.2D; other residues in SOMSection

3.3). This process is evident in the original dye release timecourses as a slight lag phase at the earliest

timepoints that is also present for wild-type Bax (SOM Section 3.1). The appearance of the lag phase

in dye release was consistent for all mutants except a handful with low endpoint activity (68, 79, 179,

and 188), though the duration of the lag between the labeled mutants varied depending on their release

kinetics (mutants with accelerated release kinetics had a shorter lag phase). The analysis of the timecourse

derivatives indicates that even for the residues outside of the BH3 region with monotone kinetics, NBD

fluorescence at the labeled residues undergoes an initial change that precedes pore formation.

Strikingly, for NBD-54C-Bax, a BH3-region mutant exhibiting both non-monotone kinetics and a
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measurable lag phase in dye release, the timepoint at which the maximum NBD fluorescence is reached

(the zero of the NBD derivative) corresponds very closely to the timepoint at which dye release achieves

its maximum rate (the peak in the dye release derivative; vertical line, Figure 3.2E). One possible interpre-

tation is that the rate of dye release is proportional to the abundance of an intermediate species associated

with increased hydrophobicity at the Bax BH3 region. However, a more rigorous quantitative analy-

sis is required to determine whether this relationship between NBD fluorescence and pore formation is

broadly consistent with the data.

Taken together, the kinetic data indicate that many regions of Bax, particularly the BH3 region, un-

dergo a concerted transition to an intermediate state of increased hydrophobicity that precedes pore for-

mation and dye release.

3.2.3 Kinetic analysis of NBD fluorescence timecourses suggests three or four dis-

tinct fluorescence states

Our analysis suggests the presence of at least one intermediate conformational state for Bax prior to pore

formation. We sought to determine whether our data indicated additional fluorescence transitions, and

the degree to which each of the labeled residues participated in these transitions. We therefore consid-

ered a simple kinetic model involving linked equilibria between conformational states of Bax, each with

differential NBD fluorescence:

BaxF1 ⇋ BaxF2 ⇋ BaxF3 ⇋ . . . ⇋ BaxFn (3.1)

with NBD fluorescence defined by

NBD(t) =
n∑

i=1

Ci[BaxFi(t)] (3.2)

where the Ci are scaling parameters denoting the NBD fluorescence of the various states of Bax. Though

the generalized scheme in Eq. 3.1 incorporates both the forward and reverse reactions, in our analysis we
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considered models containing only irreversible forward reactions:

BaxF1
k1→ BaxF2

k2→ BaxF3
k3→ . . .

kn−1→ BaxFn (3.3)

For experimental systems such as ours where only the aggregate fluorescence is measured, the reversible

and irreversible formulations produce equivalent fits to the data and are indistinguishable in terms of

their ability to identify the number of conformational states (Supplementary information).

Qualitative inspection suggests that the kinetic curves for several of the NBD-labeled residues are rea-

sonablywell approximated by the two-statemodel, which takes the formof a single-exponential equation

(Methods, Eq. 3.8; Supplementary information). This is particularly true for residues outside the BH3

region (e.g., residues 3, 120, and 179 shown in Figure 3.3A; others in SOM Section 3.4). However, the

non-monotone fluorescence curves of some BH3-region residues (54, 68, 79) are very poorly fit by the

single-exponential equation Eq. 3.8 (Figure 3.3A). Indeed, they cannot be fit by any two-conformation

scheme in the form of Eq. 3.1 where the labeled residue undergoes a single fluorescence transition, due to

the form of the mathematical formula describing such systems (Supplementary information).

We therefore defined an expanded set of kinetic models according to the reaction scheme in Eq. 3.3

with either two, three, four, or five conformational states and conditioned them on the NBD fluores-

cence data using Bayesian parameter estimation (Methods). An advantage of the Bayesian approach is

that given a suitable error model, the data can be used to rigorously estimate the posterior probability

distributions of the model parameters, and can also discriminate between models with different num-

bers of parameters (Gelman et al., 2014; Girolami et al., 2010). Prior probability distributions for the

fluorescence scaling parameters were drawn from the observed relative and absolute dynamic ranges for

the dye NBD; prior distributions for the kinetic parameters were uniform and bounded by the relevant

timescales of the experiment (ranging from 10−1 to 10−6 sec−1).

Notably, after calibrating the models we found that all residues, not only those in the BH3 region,

showed evidence of at least three conformational states, shown by the dramatic improvement in both the

fits (Figure 3.3B) and marginal likelihood values in going from two to three conformations (Figure 3.3C).
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Figure 3.3: (Previous page.) Fits of kinetic models to NBD fluorescence timecourses.

(A) Fits of the two-conformationmodel to the curves in Figure 2A.

(B) Fits of the three-conformationmodel to the curves in Figure 2A.

(C)Marginal likelihood values calculated for different models for all NBD timecourses in the dataset byMarkov chainMonte Carlo

sampling. Inset shows differences between the three, four, and five conformationmodels on an increased scale. Boxes extend from the

first to the third quartile of the data, with a horizontal line at themedian; whiskers extend above and below to 1.5 × the interquartile

range.

(D)Marginal posterior distributions of the parameters of the three-conformationmodel. The color intensities along each horizontal

red and green band indicate theMCMC sample frequency at the corresponding interval of the parameter distribution. In theC2/C3
plot, frequencies forC2 are indicated in red,C3 in green; in the k1/k2 plot, frequencies for k1 are indicated in red, k2 in green. The
section of the plot for a given residue contains three corresponding pairs of red and green bands; each pair is drawn from fits to a

single experimental replicate. Residues with identifiable parameter values aremarked “id.”

(E)Covariances of themarginal posterior distributions for NBD-54C-Bax + cBid, replicate 1, indicating the two different modes of

fitting the data.

(F)Marginal posterior distributions of the parameters of the three-conformationmodel using a log-normal prior distribution for the

scaling parametersC2 andC3.

A handful of residues showed evidence of a fourth conformational state (Figure 3.3C and SOM Section

3.5). Notably, none of the residues showed evidence supporting five or more conformation (i.e., four or

more fluorescence transitions).

3.2.4 Fitted model parameters suggest a fast transition to an intermediate confor-

mation with relatively higher hydrophobicity for the BH3 and surrounding

regions

To gain insight into the dynamics of conformational change across different regions of Bax, we inspected

the posterior distributions of the parameters of the irreversible three-conformation model. The parame-

ters of thismodel included the rates associatedwith the first and second transitions, k1 and k2, respectively,

as well as the fitted NBD fluorescence intensities of the intermediate and final conformations, C2 and C3.

The posterior distributions for these four parameters are summarized for all mutants and replicates with

cBid as the activator in Figure 3.3D.

To determine which of the two transitions is faster under these experimental conditions, the first or

the second, we examined the posterior distributions for the rate parameters k1 and k2 (Figure 3.3D). For

nine of themutants, we found that bothparameterswere clearly identifiable, indicatedby tight, unimodal

posterior distributions. For thesemutants the ranking of k1 and k2 was consistent, with the first transition

found to be at least ten-fold faster than the second transition.
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The remaining mutants had considerable bimodality in their posterior distributions, admitting two

types of fits: fast k1 and slow k2, consistent with the identifiable set of mutants, or the converse, slow

k1 and fast k2. Examination of the covariance structure of the parameters showed that this latter mode

of fitting was invariably associated with significantly greater predicted NBD fluorescence intensities for

the intermediate conformation, C2 (shown for NBD-54C-Bax in Figure 3.3E; covariance plots for other

residues in SOM Section 3.4).

In our estimation procedure, we had used a uniformprior distribution for the fluorescence parameters

C2 andC3, which assumed that a priori, values for these parameters fallingwithin a 10-fold change in either

direction from the initial value were equally likely. Given that the endpoint relative fluorescence values

formost mutants was less than 2-fold, we revisited this assumption, recalibrating the three-conformation

models using amore restrictive prior distribution forC2 andC3. Using a lognormal distribution centered

around the initial fluorescence value with a standard deviation of 1.5-fold change in either direction, we

found that bimodality in the parameter posterior distributions was reduced, with posterior distributions

consistently indicating values for k1 substantially faster than k2 (Figure 3.3F).

Using the more restrictive prior, we also analyzed the fitted fluorescence values C2 and C3 across the

residues. With the exception of position 62, the residues in or surrounding the BH3 region (positions 36-

79) were associated with greater hydrophobicity in the intermediate relative to the final conformations,

while the pore forming and C-terminal regions (positions 120-188) were associated with greater or equal

hydrophobicity in the final conformation; the three residues in the N-terminus (3, 5, and 15) were mixed

or ambiguous in their behavior.

3.2.5 Both cBid and Bim remain associated with Bax at equilibrium, but the cBid:Bax

interaction peaks early

To determine the timing of the conformational changes of Bax relative to its interactions with its BH3-

only activators, we selected the NBD-Bax mutants with near-wild-type levels of activity and measured

their interactions with cBid and Bim by Förster resonance energy transfer (FRET). We labeled single-

cysteine mutants of cBid and Bim with the donor fluorophore DAC at the h0 position of their respec-
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tive BH3 regions (Czabotar et al., 2013), which is quenched by the NBD acceptor upon binding with

Bax (Lovell et al., 2008). The resulting FRET traces give a measure of the BH3-only/Bax interaction

timescales as well as the degree to which different residues of Bax remain proximal to Bid during the pro-

cess of pore formation. Kinetic assays were performed for wild-type Bax and 12 mutants × 2 activators ×

3 replicates = 72 assays with three channels for the labeled mutants, yielding 210 curves (plots of raw data

in SOMSection 5.1). For several experimental replicates a number of outlier timepoints were observed in

the FRET data, likely due to fluorescent debris in the solution; these outliers were removed manually in

a preprocessing step (SOM Section 5.2).

As shown in Figure 3.4A, changes in FRET occurred on a relatively fast timescale, qualitatively similar

to the initial changes in NBD fluorescence. Endpoint FRET levels between the BH3-only proteins and

Bax were variable for the different sites on Bax, with high levels at residue 36 and the α5 helix residues

122 and 126 for both DAC-cBid and DAC-Bim (Figure 3.4B). Strikingly, for several labeled Bax residues

includingNBD-54C, the DAC-cBid FRET reached an early peak and then declined, whereas for Bim, the

FRET levels were sustained (Figure 3.4A and SOMSection 5.1). This phenomenon is quantified in Figure

3.4C, which shows the difference between the maximum and endpoint FRET values (due to the effects

of noise on estimates of the maximum value, fitted curves were used for these calculations; Methods).

The differences in FRET dynamics between DAC-cBid and DAC-Bim suggest that in the later phases of

activation, these proteins either adopt different bound states with Bax or have differential affinities for

Bax pre- or post-activation. Nevertheless, the fact that both activators have substantial FRET with at

least a subset of Bax residues at the experimental endpoint indicates that they remain associated with Bax

at a point when most Bax is in pores, consistent with our previous findings for NBD-126C-Bax (Lovell

et al., 2008).

3.2.6 The initial conformational transition of Bax correlates with activator:Bax

complex formation, the latter to Bax oligomerization

Todetermine the extent towhich the initial conformational change inBax indicatedbyNBD fluorescence

coincided with the formation of the BH3-only/Bax complex, we fit the NBD and FRET timecourse data

99

http://sorger.med.harvard.edu/data/bachman/kale/bid_bim_fret_nbd_release/raw_data.html
http://sorger.med.harvard.edu/data/bachman/kale/bid_bim_fret_nbd_release/outlier_removal.html
http://sorger.med.harvard.edu/data/bachman/kale/bid_bim_fret_nbd_release/raw_data.html


1.0

1.1

1.2

1.3

1.4

1.5

1.6

N
B
D
F/
F 0

NBD-54C-Bax, DAC-Bax, cBid

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

N
B
D
F/
F 0

NBD-126C-Bax, DAC-Bax, cBid

0 1 2 3 4

Time (sec ×10−3)

0
5

10
15
20
25
30
35
40
45

FR
E
T

NBD-54C-Bax, DAC-Bax, cBid

0 1 2 3 4

Time (sec ×10−3)

0

10

20

30

40

50

60

FR
E
T

NBD-126C-Bax, DAC-Bax, cBid

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

N
B
D
F/
F 0

NBD-54C-Bax, DAC-cBid

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

N
B
D
F/
F 0

NBD-126C-Bax, DAC-cBid

0 1 2 3 4

Time (sec ×10−3)

0

5

10

15

20

25

FR
E
T

NBD-54C-Bax, DAC-cBid

0 1 2 3 4

Time (sec ×10−3)

0

5

10

15

20

25

30

FR
E
T

NBD-126C-Bax, DAC-cBid

A.

3 15 36 47 54 62 122 126 138 151 175 184
−20

−10

0

10

20

30

40

50

%
FR

E
T

cBid
Bim

0
10
20
30
40
50
60
70

%
FR

E
T,

%
R
el
ea

se

NBD-54C-Bax, DAC-cBid

0
10
20
30
40
50
60
70

%
FR

E
T,

%
R
el
ea

se

NBD-126C-Bax, DAC-cBid

0 1 2 3 4

Time (sec ×10−3)

0
10
20
30
40
50
60
70

%
FR

E
T,

%
R
el
ea

se

NBD-54C-Bax, DAC-Bim

0 1 2 3 4

Time (sec ×10−3)

0
10
20
30
40
50
60
70

%
FR

E
T,

%
R
el
ea

se

NBD-126C-Bax, DAC-Bim

1.0

1.1

1.2

1.3

N
B
D

F
/
F 0

1

2

3

4

5

N
B
D

F
/
F 0

1.0

1.1

1.2

1.3

N
B
D

F
/
F 0

1

2

3

4

5

N
B
D

F
/
F 0

NBD ReleaseFRET

B. Endpoint FRET (3500 sec)

3 15 36 47 54 122 126 138 151 175 184
−5

0

5

10

15

20

25

M
ax

FR
E
T
-E

nd
po

in
tF

R
E
T

cBid
Bim

Endpoint FRET (3500 sec)C.

Fits to DAC-cBid/NBD-Bax

Fits to DAC-Bax/NBD-Bax

D.

E.

Fitted
FRET values:

Fitted
FRET values:

Figure 3.4: FRETmeasurements of DAC-83C-cBid andDAC-89C-Bim-L with Bax.

(A) Simultaneousmeasurements of dye release, NBD-Bax fluorescence, and BH3-only/Bax FRET for NBD-54C- andNBD-126C-Bax.

(B) Endpoint FRET between BH3-only activators and labeled Baxmutants.

(C)Difference betweenmaximal and endpoint BH3-only/Bax FRET.

(D) Joint fits of three-conformationmodel to NBD fluorescence andDAC-cBid:NBD-Bax FRET timecourses.

(E) Joint fits of three-conformationmodel to NBD fluorescence andDAC-Bax:NBD-Bax FRET timecourses.
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simultaneously with the three-conformation model, using two sets of fluorescence scaling parameters:

two parameters for the NBD fluorescence of the intermediate and final states, and two parameters for

the BH3-only:Bax FRET. We found that this model fit the data for NBD-54C-Bax and NBD-126C-Bax

well using only a single set of rate parameters (Figure 3.4D). The marginal posterior distributions for the

FRET of the intermediate and final states indicated that the change in FRET occurred primarily in the

BaxF1 → BaxF2 transition, declining somewhat in the BaxF2 → BaxF3 transition.

To further identify the relationship between the Bax’s conformational changes and Bax dimerization,

we collected Bax-Bax FRET data for twoNBD-Bax mutants representing the the BH3 and pore-forming

regions, with DAC-126C-Bax as the fluorescence donor (Lovell et al., 2008; Kale et al., 2014) (plots of raw

data in SOMSection6.1). Thedata suggest that unlike FRETwith cBid andBim, Bax-BaxFRET increases

fairly late relative to the conformational changes of Bax. Using the same analysis as for the BH3-only

FRET data, we found that a three-conformation model with a single set of rate parameters could simul-

taneously fit both the NBD and Bax-Bax FRET data (Figure 3.4E). In addition, the parameter estimates

indicated that the majority of the increase in Bax-Bax FRET occurred in the latter Bax conformational

change (BaxF2 → BaxF3).

3.2.7 Cancer-associated Bax mutants have defects in specific conformational tran-

sitions required for pore formation

To determine the functional significance of the conformational intermediate we identified, we assessed

a series of Bax mutants with diminished pore formation activity to determine whether apoptotic blocks

existed primarily at the initial transition, final transition, or both. Because failure to commit apoptosis is

considered a hallmark of cancer (Hanahan and Weinberg, 2011), we hypothesized that cancer-associated

Bax mutations would be enriched for those lacking apoptotic activity. We therefore generated Bax mu-

tants reported in genome sequencing studies of cancer patients and cell lines. While the most frequent

mutation was a frameshift deletion upstream of the BH3 region, there were also a number of relatively

infrequent point mutations reported throughout the BH3 and pore forming regions (Figure 3.5A).

Wecloned andpurified 19of thesemutants and analyzed their pore forming activityusing anANTS/DPX
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Figure 3.5:Mechanistic characterization of Bax point mutations in cancer.

(A)Genomic alterations in Bax identified by cancer genome sequencing.

(B)ANTS/DPX release activity of Bax point mutants.

(C) Induction of Smac-mCherry release from isolatedmitochondria by Bax point mutants.

(D) Endpoint dye release, cBid-Bax FRET, and relative NBD-126C fluorescence of labeled Bax point mutations on a 126C-Bax back-

ground.
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dye release assay (Figure 3.5A;Methods). As a measure of mutant activity, we determined the EC50 value

associated with 50% release at the timecourse endpoint (Methods), and compared it with the EC50 value

associated with wild-type Bax. Interestingly, by this measure 10 of the 19 mutants had equal or slightly

increased activity relative to wild-type Bax, suggesting that their selective effect on tumorigenesis, if any,

was independent of Bax’s pore forming activity. Of the remaining ninemutants with diminished activity,

six of these (G179E, G67R, L113P, S184E, G108E, and G108V) had strongly diminished activity, requiring

at least twice as much Bax to achieve wild-type levels of release.

To characterize the dye-release deficient mutants in a more physiologically relevant setting, we assayed

their ability to release Smac-mCherry from isolated mitochondria (Methods). The results were similar to

the dye release assay, with themutants showing significantly impaired release activity relative to wild-type

Bax (Figure 3.5B). While the degree of inhibition of Smac-mCherry release tended to correspond to the

degree of inhibition of dye release, the G179Emutant was a notable exception with relatively minor inhi-

bition of dye release but strong inhibition of Smac-mCherry release. This suggests that either the effect

of the G179Emutation is dependent on the proteolipid constituents of the mitochondrial membrane, or

that themutantmay be able to formpores small enough to release smallmolecules but not larger proteins

like Smac-mCherry.

To identify the basis for the failure of pore formation in these sixmutants, weprepared a corresponding

set of mutants labeled at the α6 helix residue C126 and characterized their insertion and pore formation

using our combined spectroscopy assay (Figure 3.5C). Two of these mutants, G108E and L113P, showed

little activity across all three fluorescence measures, with minimal pore formation, very little FRET with

DAC-83C-cBid, and reduced NBD-126C-Bax fluorescence relative to NBD-126C-Bax. The lack of activ-

ity in both upstream (FRET with cBid) and downstream (pore formation) measures suggests that these

mutants were blocked in the initial conformational transition, BaxF1 → BaxF2. However, three of the

mutants showed evidence of being blocked in the intermediate conformation due to a failure of the

BaxF2 → BaxF3 transition, with elevated cBid-Bax fluorescence coupled to minimal α6-helix insertion

and pore formation. Finally, the G179E mutant showed an unusual pattern of activity, with pore forma-

tion activity nearing that of wild-type but relatively low α6-helix insertion and elevated Bid-Bax FRET.
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3.3 Discussion

A key challenge in understanding the pore formation mechanism of Bax has been the difficulty of ob-

taining a dynamic picture of the behavior of the full-length protein in membranes at high structural res-

olution. In this study we combine an extensive dataset of kinetic measurements of fluorescently labeled

Bax mutants with an analytical framework that allows us to integrate data from these mutants despite

their differing activities. Taken together, our results indicate that Bax undergoes at least two significant

structural rearrangements en route to dimerization and pore formation, passing through an intermediate

state associated with activator binding and significant conformational changes across the entire protein.

The transition from this intermediate to the final state is concomitant with Bax homo-oligomerization.

We identified the number of relevant conformational states by calibrating an ensemble of models to

our experimental data. While the two-transition, three-conformation model captured the dynamics of

virtually all of the labeled mutants we tested, data from several mutants suggested a high probability of

a fourth conformation (third transition). Though Bayes factor calculations indicate that for some mu-

tants the four conformation model is many times more likely than three, the size of the effect is likely to

be small—that is, the additional conformation is either at relatively low concentration or involves only a

very slight conformational change. One interpretation is that this fourth conformation involves subtle

environmental changes that occur during large-scale oligomerization or pore enlargement; another possi-

bility is that the apparent support for a fourth conformation is due to kinetic phenomena that are outside

the scope of our class of simple models (saturation of BH3-only activators, bimolecular reactions, etc.).

Proper attribution of this additional timescale evident in theBax activationprocesswill require additional

modeling and experiments.

Despite the high temporal resolution and low noise of many of our experimental timecourses, and

the relatively low dimensionality of our kinetic models, we nevertheless found that there was substantial

parametric non-identifiability in the fitted parameters, often taking the form of bimodality in the pos-

terior distributions. This highlights the importance of accounting for parametric non-identifiability in

modeling studies, either through Bayesian or likelihood-basedmethods (Kreutz et al., 2013; Eydgahi et al.,

2013).
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There have been a handful of previous studies aimed at understanding the Bax pore formationmecha-

nismvia kineticmodeling (Saito et al., 2000; Kushnareva et al., 2012). Inoneof themost recent,Kushnareva

et al. identified a “lag phase” in pore formation that was apparent in dye release measurements using mi-

tochondrial Outer Membrane Vesicles (OMVs) but not synthetic liposomes (Kushnareva et al., 2012).

Our results suggest that there is a lag phase in dye release for synthetic liposomes as well, though it is far

less pronounced than what is observed for OMVs, and that it is associated with the time required for Bax

to pass through the intermediate conformation en route to forming a fully assembled pore.

Its is notable thatwhile engagement of thehydrophobic grooveofBaxby aBH3-only activator activates

it (Czabotar et al., 2013; Dai et al., 2011; Moldoveanu et al., 2013), binding of this groove by the BH3

region of another Baxmolecule is necessary for pore formation (Czabotar et al., 2013; Dewson et al., 2008;

Dewsonet al., 2012). The fact that the additionof excessBH3-only activator doesnot appear to inhibitBax

suggests that the hydrophobic groove changes conformation in such away as to allowBax to discriminate

between activator binding and dimerization. It is possible that this rearrangement of the BH3 region and

hydrophobic groove is the basis of the intermediate conformation we identify in our study.

There has been recent interest in developing inhibitors of Bax andBak as ameans to prevent pathologic

cell death in clinical applications, especially as inhibition of executioner caspases alone has proven insuffi-

cient to halt death afterMOMP (Galluzzi et al., 2014). The dual nature of the hydrophobic groove of Bax

as both a site of activation and dimerization suggests that it may be difficult to identify ligands that are

primarily inhibitors and not agonists. However, our results suggest that the hydrophobic groove of the

conformational intermediate state may be a good target site for an inhibitor, as it could bind specifically

to this partially-activated conformation to prevent Bax dimerization and pore formation.

In our study we functionally assessed a series of Bax point mutants derived from cancer genome se-

quencing studies and found that some mutants appeared to have more pore formation activity than

wild-type Bax, and others less. Notably, by far the most frequent genomic alteration of Bax in cancer

in the TCGA dataset is a frameshift deletion near the N-terminus, supporting the view that loss of Bax

pore formation activity is in most cases tumor-enhancing. While the functional role of the less common

point mutations in altering tumor growth and survival is more difficult to interpret, it is important to
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point out that Bax conformations that are blocked at the intermediate conformation (e.g., G67R,G108V,

and S184E) not only cannot form pores themselves but may also inhibit the activation of wild-type Bax

and/or Bak by binding and sequestering BH3-only activators. However, the magnitude of this effect for

the point mutants remains to be characterized.

While this study accounts for the kinetics of the changes in Bax at a number of distinct locations along

the protein, it does so primarily for a single set of concentrations of Bax, membranes, and activator. For

a clearer picture of the dynamics of pore formation by Bax and the dependence of these dynamics on the

balance of the various players, additional kinetic studieswill be needed, employing titration of the various

components.

3.4 Methods

3.4.1 Protein preparation and fluorescent spectroscopy

Procedures for purifying and labeling Bcl-2 family proteins, preparing lipid vesicles, and making kinetic

measurements by fluorescence spectroscopy were described in detail previously (Kale et al., 2014).

3.4.2 Mitochondrial Smac-mCherry release assays

Mitochondrial permeabilization assays were performed as previously described (Shamas-Din et al., 2014).

3.4.3 Kinetic modeling and simulation

Kinetic models were built programmatically using PySB (Lopez et al., 2013). The models were formu-

lated as sets of ordinary differential equations and simulated either by 1) numerical integration using the

VODE integrator (Brown et al., 1989) accessed via the Scipy library in Python (Oliphant, 2007) or 2)

solved directly using a closed-form, analytical solution for the system.

The irreversible transition model with n states has n − 1 fluorescence transitions and 2n − 2 free pa-

rameters: n − 1 transition rate parameters and n − 1 fluorescence scaling parameters; the fluorescence

associated with the initial aqueous state of Bax, BaxF1, can be calculated directly from the data.
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In the simplest case, a labeled residue undergoes a single, irreversible environmental transition between

two states with differential NBD fluorescence, denoted F1 and F2:

[BaxF1]
k→ [BaxF2] (3.4)

In such a scheme, in which the transition between the collections of underlying chemical species as-

sociated with the fluorescent states F1 and F2 occurs by a single transition step, the change in the overall

fluorescence is given by the following equation:

NBD(t) = C1[BaxF1(t)] + C2[BaxF2(t)] (3.5)

where C1 and C2 are parameters indicating the NBD fluorescence of BaxF1 and BaxF2, respectively. This

equation has the solution:

NBD(t) = [Bax0]
(
C2 + (C1 − C2)e−kt) (3.6)

Since our data is normalized in terms of the fluorescence relative to the initial state BaxF1, with the

assumption that all Bax is in conformation BaxF1 at t = 0 (that is, NBD(0) = Bax0C1), we can also

express this as a two-parameter, single exponential equation:

NBDnorm(t) = NBD(t)/(Bax0C1) (3.7)

NBDnorm(t) = 1 + Fmax(1 − e−kt) (3.8)

where Fmax =
C2
C1
− 1.

3.4.4 Parameter estimation and model discrimination

Parameter estimation and model discrimination were performed using affine-invariant Markov chain

MonteCarlo (MCMC) sampling implemented by the Python software package emcee (Foreman-Mackey

et al., 2013) and based on the algorithm described by Goodman and Weare, 2010. Parallel tempering

was used to aid convergence and to calculate marginal likelihood values by thermodynamic integration
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(Geyer, 1991; Lartillot and Philippe, 2006). For each MCMC run, a ladder of 50 different temperatures

were used, with 400 walkers at each temperature. Values for the reciprocal temperature, β = 1/T, were

spaced logarithmically from 1 to a maximum temperature of β = 10−6. Starting positions for the walkers

were chosen randomly from the prior distributions for each parameter.

Convergence of the MCMC chains was assessed by several heuristics: 1) the log marginal likelihood

(log(ML)) values were calculated by thermodynamic integration every 50 steps and assessed for asymp-

totic convergence by comparing log(ML) from the last 50 steps to the log(ML) value calculated from the

previous 50 steps. If the difference in log(ML)was greater than an absolute threshold of 3, or greater than

a relative threshold of 0.1 × err, where err was the error associated with the thermodynamic integration

procedure itself, then the chain was considered to be non-convergent. 2) If the chain passed the test of

convergence described in (1), the chains at each of the 50 temperatures were assessed for any trend towards

increases in posterior probability over the 50-step convergence interval by performing linear regression on

the posterior probability values associatedwith the sampled positions. If the trend for any of the 50 chains

was positive with p-value less than 0.001, the chain ensemble was considered to be non-convergent. If a

chain passed the programmatic heuristics in 1) and 2), the “burn-in” period was terminated and samples

were recorded for an addition 100 steps, yielding 100 steps × 400 walkers = 40,000 samples for each pa-

rameter at each temperature. Chains were assessed for mixing by inspection of the posteriors associated

with the positions of each walker across a subset of temperatures, which are plotted in SOM Section

3.4. The frequency of accepted temperature swaps was also inspected to ensure proper mixing between

chains at different temperatures. Sampling runs were performed primarily on a computing cluster as-

sembled from Amazon Elastic Compute Cloud (EC2) instances using the StarCluster software package

(Fusaro et al., 2011). All code necessary to reproduce the results of data analysis and model calibration is

freely available on GitHub, at https://github.com/johnbachman/tBidBaxLipo.

3.4.5 Calculation of maximum BH3-only/Bax FRET values

FRET timecourses for Bid and Bim with Bax were fitted with the three-conformation, irreversible tran-

sitionmodel to get a continuous curve approximating the fluorescence data. Themaximum FRET value
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was then calculated from the fitted curve.
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3.5 Supplementary information

Many chemical processes can be described as a series of linked equilibria:

F1 ⇌ F2 ⇌ ... ⇌ Fn−1 ⇌ Fn (3.9)

A common practice in biochemistry for studying such processes is to prepare an in vitro system with

F in a well-defined initial state and monitor its evolution towards equilibrium to determine the num-

ber of relevant states and the timescales associated with their associated transitions. These systems are

often monitored experimentally using fluorescence spectroscopy with labeled components having differ-

ential fluorescence intensities for different states. Examples include measurements of molecular interac-

tions by FRET, protein-membrane interactions using the environmentally sensitive label NBD, protein-

nucleotide interactions using labeled nucleotides, etc. Given that such experimental approaches only al-

low themonitoring of the total fluorescence, not the fluorescences or concentrations of the intermediates,

mathematical models are often necessary to make inferences about the system.

In this analysis we consider three classes of mathematical models, increasingly mechanistic in their ap-

proach, that can be used to fit data from these types of experiments:

1. a sum of n− 1 exponentials,

2. a system of ordinary differential equations for a set of irreversible transitions from F1 to Fn, or

3. a system of ODEs for reversible transitions between F1 and Fn.

We show that, in terms of their abilities to fit the observed fluorescence data generated by the physical

process, and to identify the number of conformational states, these three classes of models are indistin-

guishable: their solutions all take the form of a sum of n− 1 exponentials.

3.5.1 Experimental setup and definitions

We consider systems in which the total amount of the labeled entity F is constant during the experiment,

indicated by the conservation equation
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Ftot =
n∑

i=1

Fi(t) (3.10)

The distinct states Fi have fluorescence intensities defined by parameters Ci, giving the following ex-

pression for the experimentally observed (total) fluorescence, E(t):

E(t) =
n∑

i=1

Ci[Fi(t)] (3.11)

with [Fi(t)] denoting the concentration of the species Fi over time.

Sum of exponentials

Themost straightforward and commonly-used approach to analyzing equilibrium systems is to fit a sum

of exponentials such as the following:

E(t) = A1e−k1t +A2e−k2t + · · ·+Ane−knt + C (3.12)

where thenumberof exponentials required to fit thedata is indicative of thenumberof relevant timescales.

Amodel consisting of n exponentials has 2n+1 free parameters: n scaling coefficientsAi, n time constants

ki and the constant factor C (which may be required to account for background fluorescence).

Irreversible transition model

The system of first-order, irreversible transitions between n states is defined n− 1 rate parameters:

F1
k1→ F2

k2→ ...
kn−2→ Fn−1

kn−1→ Fn (3.13)

It is defined by the system of ODEs
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dF1

dt = −k1F1 (3.14)

dFi

dt = ki−1Fi−1 − kiFi (3.15)

dFn

dt = kn−1Fn−1 (3.16)

Reversible transition model

The system of linked equilibria with n states has n− 1 transitions defined by corresponding forward and

reverse parameters:

F1
kF1−⇀↽−
kR1

...
kFi−1−−⇀↽−−
kRi−1

Fi
kFi−⇀↽−
kRi

...
kFn−1−−⇀↽−−
kRn−1

Fn (3.17)

This system is defined by the system of ODEs

dF1

dt = −kF1 F1 + kR1 F2 (3.18)

dFi

dt = kFi−1Fi−1 − kRi−1Fi − kFi Fi + kRi Fi+1 (3.19)

dFn

dt = kFn−1Fn−1 − kRn−1Fn (3.20)

3.5.2 General solution for the irreversible model

The system of ODEs for the irreversible model can be described in matrix form as
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

F′1
F′2
...

F′n−1

F′n


=



−k1 0 0 · · · 0 0 0

k1 −k2 0 · · · 0 0 0
... . . .

0 0 0 · · · kn−2 −kn−1 0

0 0 0 · · · 0 kn−1 0





F1

F2

...

Fn−1

Fn


(3.21)

Because the final state Fn does not appear on the right hand side of any of the equations, it can be

removed to obtain an equivalent system for the first n− 1 states:



F′1
F′2
...

F′n−1


=



−k1 0 0 · · · 0 0

k1 −k2 0 · · · 0 0
... . . .

0 0 0 · · · kn−2 −kn−1





F1

F2

...

Fn−1


(3.22)

After obtaining the solution to the reduced system in (3.22), the concentration of the final state Fn can

be calculated from the conservation equation

Fn = Ftot −
n−1∑
i=1

Fi (3.23)

The general solution of (3.22) takes the form

F⃗(t) =
n−1∑
j=1

ajeλj t⃗η(j) (3.24)

where the aj represent arbitrary constants and λj and η⃗(j) denote the jth eigenvalue and eigenvector of

A, respectively.

The individual entries in F⃗(t) are therefore given by
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Fi(t) =
n−1∑
j=1

ajeλj t⃗η(j)i , 1 ≤ j ≤ n− 1 (3.25)

where η⃗(j)i denotes the ith element of the jth eigenvector of the matrix A.

By applying the conservation equation in (3.23) to the equation for the fluorescence (3.11), we get an

expression for the observed fluorescence in terms of the first n− 1 states:

E(t) =
n−1∑
i=1

CiFi(t) + Cn

(
Ftot −

n−1∑
i=1

Fi

)
(3.26)

=
n−1∑
i=1

(Ci − Cn)Fi(t) + CnFtot (3.27)

Substituting in for F⃗(t) we obtain the general equation for the fluorescence for the irreversible model

with n states:

E(t) =
n−1∑
i=1

(Ci − Cn)Fi(t) + CnFtot (3.28)

=
n−1∑
i=1

(Ci − Cn)
n−1∑
j=1

ajeλj t⃗η(j)i

+ CnFtot (3.29)

=
n−1∑
j=1

(
eλjt

n−1∑
i=1

(Ci − Cn)aj⃗η(j)i

)
+ CnFtot (3.30)

If we define

αj =
n−1∑
i=1

(Ci − Cn)aj⃗η(j)i (3.31)

we get our final expression

E(t) =
n−1∑
j=1

αjeλjt+ CnFtot (3.32)
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Therefore, the dynamics of a linked equilibrium system is characterized by a sumof exponentials defin-

ing the timescales. In general, a system with n states and n − 1 transitions will consist of a sum of n − 1

exponentials. Situations that will reduce the apparent number of timescales include:

• If any of the αj are 0

• If any of the eigenvalues of the matrix are 0

• If any of the eigenvalues are equal (occurs more than once)

3.5.3 The timescales of the irreversible model are defined by the rate constants ki

As shown by the general form of the irreversible model (3.32), the fluorescence is given by the sum of

exponentials with the time constants for each exponential determined by the eigenvalues of the matrix

A.

The eigenvalues ofA are given by the solutions to the characteristic polynomial

pA(λ) = det(λI−A) (3.33)

Because the characteristic matrix λI − A is lower triangular, its determinant is the product of the

diagonal entries:

pA(λ) = (λ+ k1)(λ+ k2) · · · (λ+ kn−1) (3.34)

with roots ki, 1 ≤ i ≤ n− 1.

3.5.4 General solution for the reversible model

The system of ODEs for the reversible model can be described in matrix form as
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

F′1
F′2
...

F′n−1

F′n


=



−kF1 kR1 0 0 · · · 0 0 0

kF1 −(kR1 + kF2 ) kR3 · · · 0 0 0
... . . .

0 0 0 · · · kFn−2 −(kRn−2 + kFn−1) kRn−1

0 0 0 · · · 0 kFn−1 −kRn−1





F1

F2

...

Fn−1

Fn


(3.35)

By applying the conservation equation (3.23), this can be reduced to a system of n− 1 equations:



F′1
F′2
...

F′n−1


=



−kF1 kR1 0 · · · 0 0

kF1 −(kR1 + kF2 ) kR3 · · · 0 0
... . . .

−kRn−1 −kRn−1 −kRn−1 · · · kFn−2 − kRn−1 −(kRn−2 + kFn−1 + kRn−1)





F1

F2

...

Fn−1


+



0

0
...

kRn−1Ftot


(3.36)

As for the irreversible system, the concentration of the final state Fn can be calculated from the conser-

vation equation after solving the reduced system (3.36).

As with the irreversible model, solution of this system yields a sum of n − 1 exponentials plus a con-

stant term, indicating that the three types of models will produce equivalent fits to the data despite their

different parameterizations.

116



References

Albeck, J. G., J.M. Burke, S. L. Spencer, D. A. Lauffenburger, and P. K. Sorger (2008). “Modeling a snap-
action, variable-delay switch controlling extrinsic cell death”. PLoS Biology 6.12 (Dec. 2008), pp. 2831–
2852.

Annis, M. G., E. L. Soucie, P. J. Dlugosz, J. A. Cruz-Aguado, L. Z. Penn, B. Leber, and D. W. Andrews
(2005). “Bax forms multispanning monomers that oligomerize to permeabilize membranes during
apoptosis”. The EMBO Journal 24.12 (June 2005), pp. 2096–2103.

Bleicken, S., G. Jeschke, C. Stegmueller, R. Salvador-Gallego, A. J. Garcı́a-Sáez, and E. Bordignon (2014).
“Structural model of active Bax at the membrane.”Molecular Cell 56.4 (Nov. 2014), pp. 496–505.

Brown, P., G. Byrne, and A. C. Hindmarsh (1989). “VODE, A variable coefficient ODE solver”. SIAM
J Sci Stat Comput 10, pp. 1038–1051.

Certo,M., V.DelGaizoMoore,M.Nishino,G.Wei, S. Korsmeyer, S. A. Armstrong, andA. Letai (2006).
“Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family
members”. Cancer Cell 9.5 (May 2006), pp. 351–365.

Chipuk, J. E., T. Moldoveanu, F. Llambi, M. J. Parsons, and D. R. Green (2010). “The BCL-2 family
reunion.”Molecular Cell 37.3 (Feb. 2010), pp. 299–310.

Chonghaile, T. N. et al. (2011). “Pretreatment Mitochondrial Priming Correlates with Clinical Response
to Cytotoxic Chemotherapy”. Science (New York, NY) 334.6059 (Nov. 2011), pp. 1129–1133.

Czabotar, P. E. et al. (2013). “Bax crystal structures reveal how BH3 domains activate Bax and nucleate its
oligomerization to induce apoptosis.” Cell 152.3 (Jan. 2013), pp. 519–531.

Dai, H., A. Smith, X. W. Meng, P. A. Schneider, Y.-P. Pang, and S. H. Kaufmann (2011). “Transient
binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization.”
The Journal of Cell Biology 194.1 (July 2011), pp. 39–48.

Dewson, G., S.Ma, P. Frederick, C. Hockings, I. Tan, T. Kratina, and R.M. Kluck (2012). “Bax dimerizes
via a symmetric BH3:groove interface during apoptosis.” Cell Death and Differentiation 19.4 (Apr.
2012), pp. 661–670.

Dewson,G.,T.Kratina,H.W.Sim,H.Puthalakath, J.M.Adams, P.M.Colman, andR.M.Kluck (2008).
“To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions.”
Molecular Cell 30.3 (May 2008), pp. 369–380.

Eydgahi, H., W. W. Chen, J. L. Muhlich, D. Vitkup, J. N. Tsitsiklis, and P. K. Sorger (2013). “Properties
of cell death models calibrated and compared using Bayesian approaches”.Molecular Systems Biology
9.1 (Jan. 2013), pp. 644–644.

117



Foreman-Mackey, D., D. W. Hogg, D. Lang, and J. Goodman (2013). “emcee: The MCMC Hammer”.
Publications of the Astronomical Society of the Pacific 125.925 (Mar. 2013), pp. 306–312.

Fusaro, V. A., P. Patil, E. Gafni, D. P.Wall, and P. J. Tonellato (2011). “Biomedical cloud computing with
Amazon Web Services.” PLoS Computational Biology 7.8 (Aug. 2011), e1002147.

Galluzzi, L. et al. (2014). “Essential versus accessory aspects of cell death: recommendations of theNCCD
2015.” Cell Death and Differentiation (Sept. 2014).

Gavathiotis, E., D. E. Reyna, J. A. Bellairs, E. S. Leshchiner, and L. D. Walensky (2012). “Direct and
selective small-molecule activation of proapoptotic BAX.” Nature Chemical Biology 8.7 (July 2012),
pp. 639–645.

Gavathiotis, E., D. E. Reyna,M. L. Davis, G. H. Bird, and L. D.Walensky (2010). “BH3-Triggered Struc-
tural Reorganization Drives the Activation of Proapoptotic BAX”. Molecular Cell 40.3 (Nov. 2010),
pp. 481–492.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2014). Bayesian data analysis. Chapman and
Hall/CRC.

George, N. M., J. J. D. Evans, and X. Luo (2007). “A three-helix homo-oligomerization domain contain-
ing BH3 and BH1 is responsible for the apoptotic activity of Bax”. Genes & Development 21.15 (Aug.
2007), pp. 1937–1948.

Geyer, C. J. (1991). “Markov chainMonte Carlo maximum likelihood”. Computing Science and Statistics:
Proc. 23rd Symposium on the Interface, Interface Foundation, Fairfax Station, VA, pp. 156–163.

Girolami,M.,B.Calderhead, andV.Vyshemirsky (2010). “SystemIdentification andModelRanking:The
Bayesian Perspective Learning and Inference”. In: Learning and Inference in Computational Systems
Biology. MIT Press.

Goldstein, J. C., N. J. Waterhouse, P. Juin, G. I. Evan, and D. R. Green (2000). “The coordinate release
of cytochrome c during apoptosis is rapid, complete and kinetically invariant”.Nature Cell Biology 2.3
(Mar. 2000), pp. 156–162.

Goodman, J. and J. Weare (2010). “Ensemble samplers with affine invariance”. Communications in Ap-
plied Mathematics and Computational Science 5.1 (Jan. 2010), pp. 65–80.

Gunawardena, J. (2012). “Some lessons about models fromMichaelis andMenten.”Molecular Biology of
the Cell 23.4 (Feb. 2012), pp. 517–519.

Hanahan, D. and R. A. Weinberg (2011). “Hallmarks of cancer: the next generation.” Cell 144.5 (Mar.
2011), pp. 646–674.

Kale, J., X. Chi, B. Leber, and D. Andrews (2014). “Examining the molecular mechanism of bcl-2 family
proteins at membranes by fluorescence spectroscopy.”Methods in enzymology 544, pp. 1–23.

118



Kim, H., H.-C. Tu, D. Ren, O. Takeuchi, J. R. Jeffers, G. P. Zambetti, J. J.-D. Hsieh, and E. H.-Y. Cheng
(2009). “Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial
apoptosis”.Molecular Cell 36.3 (Nov. 2009), pp. 487–499.

Kreutz, C., A.Raue,D.Kaschek, and J. Timmer (2013). “Profile likelihood in systems biology.”The FEBS
journal 280.11 (June 2013), pp. 2564–2571.

Kushnareva, Y., A. Y. Andreyev, T. Kuwana, andD. D. Newmeyer (2012). “Bax activation initiates the as-
semblyof amultimeric catalyst that facilitatesBaxpore formation inmitochondrial outermembranes.”
PLoS Biology 10.9, e1001394.

Lartillot, N. andH. Philippe (2006). “Computing Bayes factors using thermodynamic integration.” Sys-
tematic biology 55.2 (Apr. 2006), pp. 195–207.

Letai, A., M. C. Bassik, L. D.Walensky, M. D. Sorcinelli, S. Weiler, and S. J. Korsmeyer (2002). “Distinct
BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer thera-
peutics”. Cancer Cell 2.3 (Sept. 2002), pp. 183–192.

Leverson, J. D. et al. (2015). “Potent and selective small-moleculeMCL-1 inhibitors demonstrate on-target
cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax).” Cell death
& disease 6, e1590.

Lopez, C. F., J. L. Muhlich, J. A. Bachman, and P. K. Sorger (2013). “Programming biological models in
Python using PySB.”Molecular Systems Biology 9, p. 646.

Lovell, J. F., L. P. Billen, S. Bindner, A. Shamas-Din, C. Fradin, B. Leber, and D. W. Andrews (2008).
“Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabi-
lization by Bax”. Cell 135.6 (Dec. 2008), pp. 1074–1084.

Moldoveanu, T., C. R. Grace, F. Llambi, A.Nourse, P. Fitzgerald, K. Gehring, R.W.Kriwacki, andD. R.
Green (2013). “BID-induced structural changes in BAK promote apoptosis.”Nature Structural &#38;
Molecular Biology 20.5 (May 2013), pp. 589–597.

Oliphant, T. E. (2007). “Python for Scientific Computing”. Computing in Science & Engineering 9.3,
pp. 10–20.

Oltersdorf, T. et al. (2005). “An inhibitor of Bcl-2 family proteins induces regression of solid tumours”.
Nature 435.7042 (June 2005), pp. 677–681.

Rehm, M., H. Dussmann, R. U. Janicke, J. M. Tavare, D. Kogel, and J. H. M. Prehn (2002). “Single-cell
fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis
is a rapid process. Role of caspase-3”.The Journal of biological chemistry 277.27 (July 2002), pp. 24506–
24514.

Saito, M., S. J. Korsmeyer, and P. H. Schlesinger (2000). “BAX-dependent transport of cytochrome c
reconstituted in pure liposomes.”Nature Cell Biology 2.8 (Aug. 2000), pp. 553–555.

119



Shamas-Din,A.,D. Satsoura,O.Khan,W.Zhu,B.Leber,C. Fradin, andD.W.Andrews (2014). “Multiple
partners can kiss-and-run: Bax transfers betweenmultiplemembranes and permeabilizes those primed
by tBid.” Cell death & disease 5, e1277.

Souers, A. J. et al. (2013). “ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity
while sparing platelets.”Nature medicine 19.2 (Feb. 2013), pp. 202–208.

Suzuki,M., R. J. Youle, andN.Tjandra (2000). “Structure of Bax: Coregulation ofDimer Formation and
Intracellular Localization”. Cell.

Tait, S. W. G. and D. R. Green (2010). “Mitochondria and cell death: outer membrane permeabilization
and beyond”.Nature Reviews Molecular Cell Biology 11.9 (Sept. 2010), pp. 621–632.

Vo, T.-T., J. Ryan, R. Carrasco, D. Neuberg, D. J. Rossi, R. M. Stone, D. J. Deangelo, M. G. Frattini,
and A. Letai (2012). “Relative mitochondrial priming of myeloblasts and normal HSCs determines
chemotherapeutic success in AML.” Cell 151.2 (Oct. 2012), pp. 344–355.

Westphal, D. et al. (2014). “Apoptotic pore formation is associated with in-plane insertion of Bak or Bax
central helices into the mitochondrial outer membrane.” Proceedings of the National Academy of Sci-
ences of the United States of America (Sept. 2014).

Yethon, J. A., R. F. Epand, B. Leber, R.M. Epand, and D.W. Andrews (2003). “Interaction with a mem-
brane surface triggers a reversible conformational change in Bax normally associated with induction of
apoptosis.” The Journal of biological chemistry 278.49 (Dec. 2003), pp. 48935–48941.

120



[The blind men said,] “we cannot agree to what the ele-

phant is like.” The wise man then calmly said, “Each one

of you is correct; and each one of you is wrong. Because

each one of you had only touched a part of the elephant’s

body. Thus you only have a partial view of the animal. If

you put your partial views together, you will get an idea of

what an elephant looks like.”

Jain parable 4
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Abstract

In this study we develop an integrated understanding of the dynamics andmechanism of apoptotic pore

formation by coupling an in vitro biochemicalmodel systemwith quantitativemeasurement and system-

atic mathematical modeling. We measure the Bax recruitment and pore formation kinetics of synthetic

lipid vesicles incubated with purified cBid and Bax and use these measurements to distinguish between

competing mechanistic hypotheses for Bcl-2 protein function. Mechanistic models are enumerated sys-

tematically, calibrated to data, and discriminated by Bayesian statistical methods. The results from this

approach highlight several previously unappreciated features of the Bax pore formation mechanism: 1)

despite being considered an interaction with fast turnover (“hit and run”), the activation of Bax by cBid

is saturable, limiting rates of Bax recruitment; 2) while Bax recruitment to synthetic lipid membranes is

not limited at physiologic concentrations, cBid recruitment to membranes is saturable, likely due to un-

favorable electrostatic interactions between Bid molecules at the vesicle surface; 3) the Bax pore is stable,

with a minimum size of four subunits for the release of small molecules; and 4) Bax pores cooperatively

recruit additional Bax subunits, but in a fashion that actually diminishes, rather than increases, the overall

number of permeabilized vesicles. More generally, our approach highlights that data drawn from simpli-

fied systems carry a great deal of mechanistic information that can be extracted by rigorous model-based

inference grounded in prior knowledge of the relevant biochemistry.

4.1 Introduction

A key regulatory step in apoptosis is the formation of pores in themitochondrial outermembrane, a pro-

cess known as MOMP (Tait and Green, 2010). In MOMP, pores in the mitochondrial outer membrane

trigger the release of several pro-apoptotic proteins, including cytochrome c and Smac, from the mito-

chondrial intermembrane space into the cytosol, where they trigger the activation of executioner caspases
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and subsequently the orderly breakdown of the cell. MOMP itself is regulated by a related set of proteins

known as the Bcl-2 family, which includes both pro-survival and pro-apoptotic proteins. Their role as the

gatekeepers of programmed cell death has made the Bcl-2 family members key therapeutic targets: most

cytotoxic anti-cancer drugs trigger cell death by stimulating the activation of various Bcl-2 family mem-

bers, and the abundance of pro- and anti-apoptoticBcl-2 familymembers at themitochondrialmembrane

prior to treatment strongly influences the likelihood of therapeutic success (Chonghaile et al., 2011; Vo et

al., 2012). Small molecules have also recently been developed to specifically target Bcl-2 protein family

members, by either inhibiting the anti-apoptotic factors Bcl-2, Bcl-XL, andMcl-1 (Oltersdorf et al., 2005;

Leverson et al., 2015; Souers et al., 2013) or activating the pore forming protein Bax (Gavathiotis et al.,

2012).

Despite extensive progress in determining the structures of Bcl-2 proteins and their network of in-

teractions, there remain a number of unresolved questions about the pore formation mechanism. An

intensively studied but still open question is the structure and stoichiometry of the Bax/Bak pore, which

has in the past been termed the “holy grail” of apoptosis research (Volkmann et al., 2013). Key questions in

this debate are whether the pore edge is lined primarily by Bax proteins (proteinaceous pore) or by lipid

headgroups (lipidic pore), and whether its stoichiometry is fixed or variable. Estimates of the minimal

stoichiometry of the pore have ranged from two to four (Saito et al., 2000), to nine (Martinez-Caballero

et al., 2009). Moreover, imaging and flow cytometry studies have suggested that the Bax pore grows (Ble-

icken et al., 2013; Gillies et al., 2015), implying a variable stoichiometry.

It is unclear how mechanisms that have been shown to regulate Bax activity, including Bax auto-

activation and retrotranslocation, relate to pore stoichiometry and stability. The first of these, Bax auto-

activation, is a process bywhich theBH3 regionof activatedBax acts as an activator of otherBaxmolecules,

propagating the apoptotic signal (Tan et al., 2006; Gavathiotis et al., 2010). Mathematical models have

suggested that Bax auto-activation plays a key role in establishing an all-or-none mechanism of action in

cell death (Cui et al., 2008). However, whether autoactivation is responsible for activating pores at other

vesicle sites, creating additional pores on the same vesicle, or enlarging existing pores, is not clear. While

Bax has been shown to form large clusters at pore sites by fluorescent imaging and electron microscopy
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(Dussman et al., 2009; Nechushtan et al., 2001; Albeck et al., 2008b), it is unknown whether this process

is mediated by auto-activation and whether these clusters represent enlarged pores of variable stoichiom-

etry or nonspecific aggregation at the vesicle surface. Since studies demonstrating Bax autoactivation have

relied on Bax BH3 peptides (Tan et al., 2006) or heat (Gavathiotis et al., 2010) to activate Bax, it is also

unclear how much this mechanism contributes to overall Bax activation in the presence of an activator

such as Bid or Bim.

The role of Bax’s translocation equilibrium between cytosol and membranes in regulating the cell’s

propensity for apoptosis and the stability of the pore also remains poorly understood. Though it has

been shown that binding between Bcl-XL and Bax tends to result in an equilibriumwithmore Bax in the

cytosol, a process termed “retrotranslocation” (Billen et al., 2008; Edlich et al., 2011; Todt et al., 2013), what

is less clear is at what stage of the activation sequence this occurs. While Bax bindsmembranes transiently

prior to activation (Yethon et al., 2003), it is not known whether Bax readily unbinds membranes after it

has undergone activation. This is an important question forMOMP regulation as it determines whether

the Bax pore, once formed, is stable: do pores grow inevitably (e.g., by auto-activation) or can they form

transiently and then be dismantled upon binding of antiapoptotics such as Bcl-XL? FRET studies have

suggested that Bax retrotranslocation from membranes is much slower than the corresponding rate for

tBid, suggesting that Bax retrotranslocation plays a relatively minor role after activation and pore for-

mation, at least in the absence of Bcl-XL (Shamas-Din et al., 2014). On the other hand, flow cytometry

studies with OMVs have suggested that the Bax pore grows but can also collapse (Gillies et al., 2015).

In addition to the specificmechanistic issues described above, there is awell-recognized need for amore

thorough characterization of how the abundance and composition of lipid membranes governs the in-

teractions among the Bcl-2 protein family members. The fact that many Bcl-2 interactions take place

only in themembranemeans that any assessment of the interactions among these proteinsmust also take

into account their individual interactions with membranes. For example, the interaction of tBid with

synthetic membranes was recently shown to be highly dynamic, with a relatively low affinity that is also

dependent on the presence of cardiolipin and negatively charged lipid headgroups (Shamas-Din et al.,

2015; Shamas-Din et al., 2014; Shamas-Din et al., 2013). It was reported that Bax binding to lipid mem-
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branes saturates at fairly low Bax/liposome ratios of 10 (Satsoura et al., 2012), which is surprising given

several observations of large pores and clusters of Bax in both in vitro and in vivo studies (Schafer et al.,

2009; Gillies et al., 2015; Nechushtan et al., 2001). Understanding the role of membranes in determining

kinetic and stoichiometric constraints on Bax recruitment is essential not only to reproducibly interpret

experiments in which lipid concentration is an uncontrolled variable but also to understand the relation-

ship between variability in mitochondrial abundance, morphology, and composition and the propensity

of cells to activate Bcl-2 proteins and undergo apoptosis.

Additional mechanistic questions arise from attempts to integrate individually convincing pieces of

data from disparate studies. This is illustrated by the ambiguities surrounding the interaction between

activator BH3-only proteins and the pore forming proteins Bax and Bak. Though previously a matter of

debate, it is now widely accepted that activator BH3-only proteins directly bind Bax and Bak to trigger a

conformational change that makes them competent for pore formation. NMR and biochemical studies

of Bax have identified an initial conformational change involving the ejection of the a9 helix from the

BH1:3 groove and the exposure of the 6A7 epitope, mediated by binding of the BH3-only activator to a

“rear pocket” on Bax (Kim et al., 2009; Gavathiotis et al., 2010). Other studies have suggested that the

activatorbinds, possibly in a subsequent step, to theBH1:3 grooveofBax itself in amatter analogous to the

binding and sequestration of BH3-only proteins by the anti-apoptotic Bcl-2 family members (Czabotar

et al., 2013; Dai et al., 2011).

The interaction betweenBax and its BH3 activators such as Bid andBimhas been found to be transient

and is often described as “hit and run.” (K. Wang et al., 1996; Gavathiotis et al., 2010). However, FRET

studies with full-length Bid and Bax have shown that Bax remains bound to its activator in the mem-

brane, even after it has inserted into membranes (Lovell et al., 2008); in addition, immunoprecipitation

of activated Bax by the 6A7 antibody pulls down tBid (Kim et al., 2009). In light of the known inter-

action surfaces of Bax and its activators, the role of this post-activation complex presents a conundrum.

If the complex involves the BH3 motif of the activator, the accumulation of active Bax should progres-

sively sequester the activator, slowing down further activation. On the other hand, if the complex with

activator involves the BH3 region or BH1:3 groove of Bax, this should inhibit Bax dimerization and pore
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formation, which has been shown to involve precisely these surfaces (George et al., 2007; Czabotar et al.,

2013; Dewson et al., 2012). This suggests that either the functional effects of this Bax:activator complex

have not yet been characterized, or that the post-activation complex between these proteins involves novel

binding sites of one or both proteins.

A classic approach to determining reaction mechanisms in biochemical systems is by kinetic analysis

of key steps under titration of system components. Kinetic analysis can determine the rate limiting steps

under various concentration conditions, the molecularity (e.g., uni- versus bi-) of various reaction steps,

and whether binding interactions are competitive or non-competitive. Kinetic analysis has been used

extensively to characterize the mechanisms of pore forming peptides and toxins (Schwarz et al., 1992;

Gregory et al., 2008). Despite the availability of a well-validated in vitro kinetic assay for Bcl-2 protein

activity, there have been few detailed modeling studies (Saito et al., 2000; Kushnareva et al., 2012). In

addition, despite the demonstrated robustness of the experimental system, these studies have given rise

to apparently conflicting results. For example, the relatively straightforwardmeasure of the scaling of the

rate of permeabilization with Bax concentration has variously been reported as cooperative (Saito et al.,

2000), saturating (Satsoura et al., 2012), and linear (Kushnareva et al., 2012). This may in part be due to

difficulties of extending the analytical methods developed for permeabilization by peptides to the Bcl-2

family, which involve three components rather than two (vesicles, pore forming protein, and activator).

The addition of a third component not only increases experimental complexity, but also combinatorially

increases the number of models to consider and makes parameter estimation and model comparison by

classical optimization methods far more challenging.

In this study we measure Bax recruitment and pore formation across a range of experimental condi-

tions andusemathematicalmodels to explain how the results in the full, three-component systemdepend

on the precise location in concentration space. In contrast to models that explain only single slices of this

data, such as the response to Bax titration at a single Bid and membrane concentration, the resulting

models have explanatory power across the whole concentration space. Moreover, by using this process

we were able to resolve questions about the relative roles of Bid, Bax andmembranes in determining Bax

recruitment and insertion. The data andmodels show that excess Bax can indeed kinetically inhibit Bid’s
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activity, but primarily in its inactivated state. We show that membrane insertion of the pore forming

helix of Bax occurs concurrently with Bax dimerization and is reversible; that the Bax pore in large unil-

amellar vesicles is stable, has a minimal size of four subunits, and grows through a process that results

in a highly non-independent distribution of Bax across vesicles. Extending our conclusions to MOMP

in the biological setting, we propose that Bax auto-activation does not, as often suggested, “propagate”

the apoptotic signal across the cell, but rather causes pores to become enlarged locally, which can actually

diminish the global response. In this interpretation, the “snap-action” mechanism of apoptosis in cells

can be explained by the fact that the Bax-mitochondria system is a high-membrane concentration, low

compartment number system, leading to rapid recruitment of Bax and enlargement of pores.

4.2 Results

To identify themechanismofBax pore formation, we used an in vitro reconstituted systemwith synthetic

lipid vesicles mimicking the mitochondrial outer membrane (Kuwana et al., 2002; Lovell et al., 2008).

While this system lacks certain characteristics of the mitochondrial membrane, most importantly certain

relevant protein components (Schafer et al., 2009; Shamas-Din et al., 2013), it has been reliably used to

identify properties of the activators and inhibitors of Bax.

To assess the process of Bax activation andmembrane insertionweused a single-cysteinemutant of Bax

labeled with the dye NBD as a reporter of membrane insertion, as described previously (Kale et al., 2014;

Lovell et al., 2008) (Methods). In each set of kinetic experiments, NBD-126C-Bax was incubated with

liposomes and an activator (cBid or Bim BH3 peptide), producing fluorescence timecourses indicating

the rate and extent of Bax insertion. To determine the influence of individual components on insertion

kinetics, titrations of the system’s three components components were performed (Figure 4.1A). Changes

in kineticswerequantifiedby fitting theNBD-126C-Bax fluorescence timecourseswith the two-parameter

exponential equation

NBDnorm(t) = 1 + Fmax(1 − e−kt) (4.1)

with k defining the rate of the insertion process and 1 + Fmax the fold-change NBD-fluorescence at equi-
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Mechanism/hypothesis High [Bax] effect on Fmax High [Bax] effect on k

Simple partitioning No effect No effect

Bax/membrane binding site Decrease Increase

Bax kinetically saturates Bid No effect Decrease

Bax oligomerization Increase Increase

Observed Increase Decrease

Table 4.1: Effects of particular mechanisms on the rate and extent of Bax insertion

librium. Example timecourses with corresponding fits are shown in Figure 4.1B.

4.2.1 When activated by cBid, the rate of Bax membrane insertion saturates with in-

creased Bax

Surprisingly, when NBD-126C-Bax was titrated at standard concentrations of cBid (∼20nM) and lipid

vesicles (0.1 mg/mL), we found that the insertion rate k declined with increasing Bax (Figures 4.1B-D).

A previous study using measurements at a 2-hour endpoint showed a similar phenomenon of mem-

brane saturation, for which a stoichiometrically limiting membrane binding site for Bax was proposed

as a mechanism (Satsoura et al., 2012). However, a limitation in Bax binding sites would tend to suppress

equilibrium binding of Bax (Figure 4.1E, “Lipo sites”), while the scaling of the fluorescence values with

Bax concentration at 1.5, 3 and 6 hours shows that the earlier timepoints show a more significant reduc-

tion in Bax binding than the 6 hour endpoint (Figure 4.1D). In addition, the fitted equilibrium insertion,

Fmax, actually increased at the highest concentrations of Bax (Figure 4.1B). These results suggest that the

saturation is primarily kinetic rather than stoichiometric.

To explain the unusual kinetics we observed, we considered several possibilities: first, that high Bax

levels were causing the activator cBid to be kinetically saturated, limiting the rate (k) of Bax recruitment

(Figure 4.1E, “Bid saturation”); however, this hypothesis could not explain the rise in equilibrium Bax

recruitment (Fmax). On the other hand, we considered the possible role of Bax oligomerization in ex-

plaining the increase in equilibrium Bax recruitment (Figure 4.1E, “Bax oligo.”), though this would not

account for the reduction in the recruitment rate. As summarized in Table 4.1, none of thesemechanisms

in isolation made predictions that corresponded with the observed data.
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Figure 4.1: Rate and extent of NBD-126C-Bax insertion under unlabeled Bax titration with cBid as the activator.

(A) The in vitromodel system is comprised of three components: liposomes, Bax, and activator (cBid or Bim BH3). Experiments take

the form of titrations of one ormore of these components.

(B)Normalized NBD-126C-Bax fluorescence at varying Bax concentrations, using 20 nM cBid and 0.1mg/mL liposomes. Black lines

show fits to Eq. 4.1.

(C)Fmax and k values resulting from fitting Eq. 4.1 to fluorescence timecourses at each concentration.

(D)Relative fluorescence values at 1.5, 3, and 6 hrs. Plotted values indicate themean of ten timepoints prior to the specified time-

point; error bars indicate the standard deviation over the points.

(E) Predictions of relative Bax insertion at varying Bax concentrations by four mechanistic models.
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4.2.2 Membrane abundance affects the fraction of membrane-inserted Bax, but only

kinetically

To identify the mechanisms responsible for the kinetics we observed, we performed a series of additional

titration experiments intended to isolate the roles of particular constituents in governing the kinetics. We

first tested the prior hypothesis that Bax insertion is stoichiometrically limited by a membrane binding

site by titrating liposomes while keeping the concentration ofNBD-126C-Bax constant (Figure 4.2A). To

minimize cBid-dependent effects on kinetics and isolate the Bax-liposome interaction in this experiment

we activated Bax using a high concentration (50μM) of Bim BH3 peptide rather than cBid (we revisit the

role of cBid below).

The resulting timecourses of relative NBD fluorescence clearly show that the rate of Bax recruitment

increases with liposome concentration (Figure 4.2A). We sought to determine the extent to which the li-

posome concentration affected equilibrium Bax insertion, since the two models of Bax-membrane bind-

ingmake different predictions: the binding site hypothesis predicts that when binding sites are limited by

low liposome concentration, the fraction of Bax bound at equilibrium (Fmax) will be diminished (Figure

4.2B). On the other hand, the partitioning model predicts that given sufficient time, the amount of Bax

recruited at equilibrium will not be dependent on the liposome concentration.

Noting that the fitted Fmax values at the three highest liposome concentrations were nearly equal, we

hypothesized that the maximal fluorescence was independent of the liposome concentration, consistent

with the simple partitioning model. Fitting the data with a global Fmax value across all Bax concentra-

tions yielded good fits, with values for the insertion rate k that increased linearly with liposome concen-

tration, consistent with a pseudo-first-order reaction (Figures 4.2A and 4.2C). This analysis suggests that

a mechanism in which Bax is irreversibly recruited to membranes without any stoichiometric limitation

is sufficient to explain the major features of the liposome titration data.
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(A) Relative NBD-126C-Bax fluorescence at increasing liposome concentrations. Red curves indicate fits to Eq. 4.1.

(B) Predictions of relative Bax insertion under liposome titration bymodelsM1 andM3.

(C) Scaling of fitted k values using a globally fitFmax value of 3.85. The green line shows a linear fit to the log-transformed values; the
blue line shows a linear fit to the non-transformed values.

(D) Schematic representation of modelsM1-M4. ModelsM2 andM4 incorporate the reverse rate kr2, modelsM1 andM3 do not.

(E)Global fit of modelM1 to the liposome titration data.

(F)Relativemarginal likelihood values for modelsM1-M4. Values represent the natural logarithm of the relative probability between

eachmodel and the highest probability modelM1.

(G) Posterior probability distribution of the number of sites per liposome inmodelM3 after model calibration.

(H) Posterior probability distribution of the rate constant kr2 of modelM2 after model calibration.
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4.2.3 Mechanisticmodeling showsthatmembrane sites arenot limiting forBax, and

spontaneous Bax inactivation is negligible

Seeking an explanation expressed in terms of elementary reactions, we formulated several mechanistic

models for Bax recruitment and examined their fit to the titration data in Figure 4.2A. (Methods). Prior

studies have shown that Bax binding of membranes is a prerequisite for Bax activation in this setting

(Lovell et al., 2008), allowing us to restrict our initial set of models to those of the general form

Baxs
kf1[L]−−⇀↽−−
kr1

Baxm
kf2−⇀↽−
kr2

Baxi (4.2)

in which soluble Bax (Baxs) reversibly binds membranes to form a peripherally membrane-bound form

(Baxm) (Yethon et al., 2003). This membrane-bound form can either return to solution or undergo an

activating conformational change by encountering an activator BH3-only protein or peptide. To fit the

model to the experimental data, we used the relative fluorescence of inserted Bax,

F = c2([Baxi]/[Bax0]) (4.3)

with [Bax0] denoting the total concentration of Bax and c2 the fluorescence of the inserted state relative

to aqueous Bax (Baxs).

The chemical reactions defining each model were formulated as systems of ordinary differential equa-

tions by applying the law of mass action and simulating deterministically. For example, the “simple par-

titioning” model M1 shown in Figure 4.2D, which follows the reaction scheme in Eq. 4.2 but eliminates

the reversal of activation by setting kr2 = 0, yields a systemwith three rate equations and four parameters,

similar to an enzyme-substrate systemwith the liposomes as the (unsaturable) enzyme (Chen et al., 2010):

d[Baxs]/dt = −kf1[L][Baxs] + kr1[Baxm] (4.4)

d[Baxm]/dt = kf1[L][Baxs]− kr1[Baxm]kf2[Baxm] (4.5)

d[Baxi]/dt = kf2[Baxm] (4.6)
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Calibration of models to data was performed by Markov chain Monte Carlo sampling, allowing the

posterior probability distributions to be estimated for unknown parameters (Gelman et al., 2014). Mod-

els were compared by estimating the Bayesian integral known as the marginal likelihood, which specifies

the overall probability of a model in light of the data (Calderhead and Girolami, 2009; Girolami et al.,

2010). Because parameters and their associated uncertainties are integrated out, this framework allows

models with different numbers of unknown parameters to be compared rigorously (Methods).

In the case of model M1, sample fits from the posterior parameter distribution show that even this

simple model fits the liposome titration data quite well (Figure 4.2E).We fit three additional models that

incorporated either a non-zero reverse rate kr2 (M2), a limited number of sites per liposome (M3), or both

(M4) (Figure 4.2D). Models with limited binding sites exhibited substantially worse fits to the data as

measured by the marginal likelihoods of the models relative toM1 (Figure 4.2F). Moreover, the posterior

probability density for the number of sites per liposome inM3was skewed entirely toward themaximum

allowed by the prior (1000 sites per liposome), indicating that it is highly probable that liposome binding

sites are not limiting (Figure 4.2G).

To determine whether Bax inactivation or “jumping” (Shamas-Din et al., 2014) was likely to result

in diminished Bax recruitment at low liposome concentrations, we examined the posterior distribution

of the activation reverse rate kr2 in model M2. The distribution for the reverse rate fell entirely below

10−4 sec−1, suggesting that inactivation was not likely to be a factor affecting Bax binding during our

experiments (Figure 4.2H). Our upper bound corresponds roughly to the previously published estimate

of 2× 10−4 sec−1± 1, whichwas obtained using a different experimental system (Shamas-Din et al., 2014).

Taken together, these results indicate that the kinetics of Bax activation by a BH3 peptide under lipo-

some titration can be explained by a very simple partitioning and activation model in which Bax inac-

tivation is negligible and liposome binding sites are not stoichiometrically limiting. Despite not being

stoichiometrically limiting, the model indicates that Bax insertion is kinetically very sensitive to liposome

concentration, as recruitment is substantially delayed, though not ultimately prevented, at low liposome

concentrations.
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4.2.4 NBD-126C-Baxfluorescence increasesconcurrentlywithareversibleoligomer-

ization step

To further evaluate these models of Bax activation, we performed the converse experiment in which we

kept liposomes constant while titrating in unlabeled Bax as a competitor using Bim BH3 as an activator

(Figure 4.3A). For this experiment, the partitioningmodelM1 predicts that the insertion kinetics of the la-

beled Baxwill be unaffected by the competitor, while liposome binding sitemodels will show diminished

Bax binding as competitor is increased (Figure 4.1E; Table 4.1).

Surprisingly, the results showed that both the rate (k) and extent (Fmax) of Bax insertion increase, rather

thandecrease, withBax concentration (Figures 4.3A-B).Though this further supports the conclusion that

liposome binding sites are not limiting for Bax, it also indicates that the simple partitioning models M1

and M2 do not adequately capture the dynamics of the system.

To explain these results we considered that Bax oligomerization could be responsible for the increase

in Bax recruitment at higher Bax concentrations (Figure 4.1E). If the fluorescent state were to increase

substantially after oligomerization, higher levels of Bax would shift the equilibrium to favor the highly

fluorescent oligomer rather than the less-fluorescent monomer. The addition of Bax oligomerization

introduced additional species of Bax into the system requiring us to make further assumptions about

which species contributed to the experimentally observedNBD fluorescence, combinatorially expanding

the set of hypotheses to include 16 models (Figure 4.3C).

Upon fitting these models to the titration data in Figure 4.3A, we found that while this data alone

was not able to discriminate a single best model, it was able to reveal necessary features of the mechanism

(Figure 4.3D). As expected, models M1 and M2 failed to fit the data because they exhibited no scaling of

NBD-126C-Bax fluorescence (Figure 4.1E; Figure 4.3D). Models M5 and M7, which respectively contain

irreversible or reversible dimerization, also failed in the same fashion: both had an irreversible activation

step (kr2 = 0) so dimerization after activation had no effect on the change in NBD fluorescence, which

included bothmonomeric and dimeric forms of activated Bax.

Calibration to the liposome titrationdata (Figure 4.3A) effectively eliminatedmodelsM1,M2,M5,M7,

M9 andM10 from consideration, but the remainingmodels were separated by smaller differences in their
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Figure 4.3: (Previous page.) Rate and extent of NBD-126C-Bax insertion under unlabeled Bax titration with Bim BH3 peptide as the

activator.

(A) Relative NBD-126C-Bax fluorescence at increasing Bax concentrations. Red curves indicate fits to Eq. 4.1.

(B)Fmax and k values resulting from fitting Eq. 4.1 to fluorescence timecourses at each concentration.

(C) Schematic representation of modelsM1-M2 (no dimerization) andM5-M16 (dimerization). Each group of four models (M5-M8,

M9-M12,M13-M16) consists of corresponding sets of reactions with either, none, or both of the reverse rates kr2 and kr3 set to 0. The
groups of models differ based onwhichmolecular species contribute to the NBDfluorescence. In modelsM5-M8 it includes all acti-

vated Bax; inM9-M12 only Bax dimers; inM13-M16monomeric Bax and dimeric Bax contribute separately with distinct fluorescent

intensities.

(D)Relativemarginal likelihood values for modelsM1-M2 andM5-M16 after calibration against the Bax titration data in (A). Values

represent the natural logarithm of the relative probability between eachmodel and the highest probability modelM8. Colors corre-

spond to themodel groups in (C).

(E)Relativemarginal likelihood values for modelsM1-M2 andM5-M16 after calibration against the liposome titration data in Figure

4.2. Values represent the natural logarithm of the relative probability between eachmodel and the highest probability modelM11.

Colors correspond to themodel groups in (C).

marginal likelihoods (Figure 4.3D).To further refine this subsetwe calibrated them independently against

the liposome titration data from Figure 4.2 (Figure 4.3E). Here the data discriminated along a different

characteristic of themodels, showing significantly higher probability formodelsM9-16 inwhich theNBD

fluorescent species included the dimer. This further eliminated M6 and M8 from consideration.

Taken together, these results show that higher levels of Bax lead to faster and greater fractional recruit-

ment, with the fluorescence increase of NBD-126C-Bax coordinated with dimerization.

4.2.5 The activation of Bax by cBid is not “hit-and-run,” but is saturable with an ef-

fectiveKM of∼150 nM Bax

Since both titration experiments using a BimBH3 peptide to activate Bax showed no evidence of a kinetic

saturation attributable to Bax-liposome or Bax-Bax interactions, we considered the possibility that the

barrier to Bax recruitment that we observed in our initial experiments (Figure 4.1) was due to features of

the cBid/Bax interaction. We therefore performed titrations with unlabeled Bax in the presence of 25 nM

NBD-126C-Bax and a range of cBid concentrations (2–80 nM) and fit the resulting kinetic curves with

Eq. 4.1 (Figure 4.4A).

For all cBid concentrations, the presence of competing Bax dramatically slowed down the relative

NBD-126C-Bax insertion rate leading to apparent saturation (Figure 4.4A). While the predicted Fmax in-

creased somewhat at high Bax, the rate k diminishes dramatically. To determine if the scaling of the rate

kwas consistent with a canonical enzymatic role for cBid, we fit each curve individually with aMichaelis-
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Figure 4.4: Rate and extent of NBD-126C-Bax insertion under joint titration of cBid and unlabeled Bax.

(A)Fmax and k values resulting from fitting Eq. 4.1 to fluorescence timecourses at each pair of concentrations.

(B) Insertion rates (k) for 25 nMNBD-126C-Bax and varying cBid concentration (blue line). The red line indicates the expected linear

scaling of k based on the lowest two cBid concentrations after assuming a fixed kcat for all cBid concentrations.
(C) FRET between Alexa-568-cBid andDiD-labeled liposomes after 2 hour incubation at 37C, fitted with the lipid binding site and

Gouy-Chapmanmodels. Error bars indicate the standard deviation of three replicate wells. Shaded area indicates the 95% confidence

interval of model predictions after calibration; the red line indicates themean prediction.

(D) Predicted cBid binding under liposome titration using the fitted lipid binding site or Gouy-Chapmanmodels. Blue dots indicates

the previously publishedKD (liposome concentration yielding 50% binding).

(E) Posterior probability distribution for the number of lipid binding sites per liposome after fitting the lipid binding site model.

(F) Posterior probability distribution for parameters of the Gouy-Chapmanmodel after fitting. v indicates the net effective charge on
cBid (red line drawn at the calculated value 2); b indicates the ionic strength coefficient (red line at the calculated value 11.5).
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Menten equation for the rate of relative product production:

Vnorm([Bax]) =
kcat[cBid]
KM + [Bax] (4.7)

The close correspondence of the observed k data with the scaling predicted by Eq. 4.7 suggest that the

kinetic barrier to Bax insertion is mediated by an enzymatic mechanism with cBid as the enzyme. How-

ever, Eq. 4.7 also predicts that for any concentration of Bax, kwill increase linearlywith the concentration

of cBid, while it clearly does not (Figure 4.4B). Additional cBid does not lead to a proportional increase

in Bax recruitment, which explains why the Bax saturation effect was previously observed at a variety of

Bax concentrations even though the Bax:cBid ratio was maintained at 5:1 (Satsoura et al., 2012).

4.2.6 Bid binding to membranes is stoichioimetrically limited

We hypothesized that the diminishing effects of cBid were due to a failure of cBid to be stably recruited to

membranes at high cBid/liposome ratios. To test this, we measured cBid/membrane binding by FRET

using cBid labeled with Alexa 568 as the donor and liposomes labeled with the lipophilic dye DiD as the

acceptor (Methods). We incubated 10 nMof the labeled cBid withDiD-liposomes and titrated unlabeled

cBid as a competitor (Figure 4.4C). Data from the 2-hour endpoint indicate that unlabeled cBid dramati-

cally reduces the ability of the labeled cBid to bind liposomes. This is in direct contrast with Bax activated

by Bim BH3, where the addition of unabeled Bax increased, rather than decreased, Bax-membrane asso-

ciation (Figure 4.3A).

The ability of BH3 proteins to bind membranes is known to be sensitive to the protein and lipid con-

stituents of membranes (Kuwana et al., 2002; Shamas-Din et al., 2015; Shamas-Din et al., 2013), but a

stoichiometric limitation on Bid’s ability to bindmembranes has not been previously described. We con-

sidered two possible mechanisms to explain the Bid-membrane binding data we observed. The first is

a model positing a limited number of binding sites on the membrane surface, for example a particular

lipid species that is required for binding (Z. X. Wang, 1995). The second model is based on the Gouy-

Chapman theory describing interactions at charged surfaces and has been previously used to describe

the non-ideal membrane binding properties of the pore forming peptide melittin (Schwarz and Beschi-
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aschvili, 1989) (Methods). Both of thesemodels produced fairly good fits to the data, though the fit of the

Gouy-Chapman model was superior (Figure 4.4C). To determine whether the parameters derived from

our fitting procedure were consistent with existing observations of Bid-membrane binding, we simulated

a previously published liposome titration experiment in which the fraction of cBid bound was estimated

by fluorescence correlation spectroscopy (Shamas-Din et al., 2013) (Figure 4.4D).We found that the lower

bound of the 95% confidence interval of our predictions was close to the previously reported KD of 0.9

nM liposomes for cBid. This correspondence was remarkable given that our FRET experiments were

performed in a plate-based assay whereas the publishedKD for liposomes was obtained in a cuvette with

stirring, which increases association rates and leads to lower apparentKD values.

We then examined the probability distributions of the fitted parameters of both models to determine

if they fell within physically plausible ranges. The binding site model had four free parameters, for the

affinity of cBid to the lipid binding site (K), the concentration of lipid binding sites (P0), the FRET effi-

ciency of the bound state (Feff), and the degree of non-specific binding (N). The posterior distribution

of P0, the concentration of lipid binding sites, showed a range of roughly 1–7 binding sites per liposome,

which is implausibly low, given that even the lowest-concentration lipid species, cardiolipin, is present at

roughly 8,000 molecules per liposome.

On the other hand, the free parameters of the Gouy-Chapmanmodel fell within plausible ranges. For

example, the effective charge on each cBid monomer, denoted v in the model, had values of two or less;

the net charge on tBid determined by inspection of the sequence was 2, which in practice represents an

upper bound on the actual effective charge of the protein (Roise, 1993). In addition, the dimensionless

coefficient b was consistent with values calculated from the ionic strength of the solution. We therefore

find the Gouy-Chapman model to be a plausible explanation of the saturation binding we observe for

cBid, especially given the important role that electrostatic interactions are already known to play in Bid-

membrane interactions.
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4.2.7 Bax pores in large unilamellar vesicles are stable and exhibit all-or-none re-

lease

We then turned our attention to the kinetics of pore formation, which occurs downstream of Bax in-

sertion (Lovell et al., 2008). An essential first step in characterizing the pore formation mechanism is

to determine whether release is all-or-none, reflecting stable pores, or graded, reflecting transient pores

Figure 4.5A). A prior study usingmitochondrial outer membrane vesicles suggested a mechanism at least

partially graded (Gillies et al., 2015), whereas a study using giant unilamellar vesicles suggested a stable and

growing pore (Bleicken et al., 2013).

To determine the pore formation mechanism in our large unilamellar vesicles we used fluorescence re-

quenching, whichmakes use of theANTS/DPXdye/quencher pair (Ladokhin et al., 1995). Thismethod

exploits the fact that in an all-or-none release mechanism, the degree of quenching of the fluorescent

ANTS that remains entrapped, denotedQin, is invariant to the amount of dye released (Figure 4.5A, blue

curve), whereas in a graded release mechanism, ANTS remaining entrapped is gradually dequenched as

the overall amount of released dye increases (Figure 4.5A, red curve). In requenching analysis,Qin is deter-

mined by titrating in additional amounts of the quencher DPX after pore formation has reached steady

state: the released ANTS becomes quenched, but entrapped ANTS is not (Ladokhin et al., 1995). Re-

quenching analysis has been used to determine the permeabilization mechanism of a number of pore-

forming peptides (Wimley et al., 1994; Gregory et al., 2008; Ladokhin et al., 1995).

We performed requenching analysis for Bax under a variety of conditions to account for the the possi-

bility that the stability of the Bax pore might depend on the strength or type of activation used. Thermal

activation of Bax by incubation with liposomes at 43C yielded a requenching curve supporting an all-

or-none mechanism, as did the antimicrobial peptide cecropin A, which was previously shown to have

an all-or-none mechanism (Gregory et al., 2008) (Figure 4.5B). Activation of Bax by cBid at a variety of

different concentrations also indicated an all-or-none mechanism (Figure 4.5C). We therefore concluded

that Bax pores in 100 nm large unilamellar vesicles are stable, with all-or-none release.
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Figure 4.5: Requenching analysis of Bax pore formation in LUVs.

(A)All-or-none vs. graded permeabilization. All-or-none release (blue curve) results in constant quenching (Qin) across a range of dye
release levels (Fout); graded release (red curve) results inQin values that increase withFout.
(B)Qin vs. Fmax for Bax and cecropin A incubated at 43C.

(C)Qin vs. Fmax for Bax activated by varying concentrations of cBid.
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4.2.8 Permeabilization of liposomes by Bax slows down with time and is not “enzy-

matic”

We then measured the kinetics of Bax pore formation using ANTS/DPX liposomes as our indicator of

liposome permeabilization. As with our Bax insertion studies, we incubated the labeled liposomes with

varying concentrations of Bax and an activator BH3-only to determine features of the permeabilization

mechanism.

In our experiments we noticed that rate of dye release is not constant, but rather slows down with

time and plateaus below 100% release (Figure 4.6A-B). This can be seen clearly by plotting the hazard

rate −F′(t)/F(t), which measures the instantaneous permeabilization rate over time (Figure 4.6B). A

simple enzymatic conversion process is characterized by a hazard rate that is fixed over time, which does

not fit the permeabilization kinetic data (Figures 4.6A-B, blue line). On the other hand, the function

F(t) = Fmax(1 − e−kt) (4.8)

with a parameter (Fmax) defining the (submaximal) steady-state permeabilization level, results in very

good fits (Figure 4.6A-B, red line). The two-parameter exponential function Eq. 4.8 is similar to those

used in previous kinetic studies of Bax-mediated permeabilization (Saito et al., 2000; Schlesinger and

Saito, 2006; Kushnareva et al., 2012), indicating that our result is consistentwith previous findings. How-

ever, the concentration dependence of the extent (rather than the rate) of permeabilization has not pre-

viously been analyzed.

Permeabilization curves that reach steady-state levels below 100% release have been observed for pore-

forming peptides (Schwarz et al., 1992; Andersson et al., 2007). A graded, transient release mechanism

is one possible explanation for this observation, but this was previously ruled out by our requenching

experiments (Figure 4.5). An alternative explanation is that stable insertion of Bax into membranes pro-

gressively depletes Bax from the solution, slowing release. To test this hypothesis, we pre-incubated cBid

andBaxwith varying amounts of unlabeled liposomes for 2 hours to allowpore formation to reach steady

state, then added in labeled liposomes and measured pore formation for an additional 3 hours (Figure
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Figure 4.6: Stable recruitment of Bax tomembranes results in submaximal permeabilization.

(A) Representative ANTS/DPX permeabilization curve for 590nMBax activated by heating to 43C. Blue curve indicates the best fit to

an “enzymatic” (constant rate) permeabilizationmodel. Red curve indicates best fit to the submaximal permeabilizationmodel Eq. 4.8.

(B)Hazard rate of data shown in (A), with corresponding fits.

(C) Permeabilization kinetics following liposome preincubation. During the pre-incubation step, 100 nM cBid, 100 nMBax, and vary-

ing concentrations of unlabeled liposomes were incubated for 2 hours at 37C; control wells contained only liposomes. After incuba-

tion, 1.6 nMANTS/DPX labeled liposomes were added to the pre-incubation wells; corresponding concentrations of cBid, Bax and

ANTS/DPX liposomes were added to control wells. Permeabilization kinetics were thenmeasured by fluorescence spectroscopy for

3 hours. Bar plot shows endpoint permeabilization levels for two replicates at each liposome concentration; inset shows kinetic time-

courses for 0.68 nM unlabeled liposomes.
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4.6C). Depletion of Bax due to insertion during the pre-incubation phase would result in decreased re-

lease in the second phase of the experiment. As a control, we performed experiments in which the labeled

and unlabeled liposomes were incubated simultaneously.

When the concentration of liposomes in the pre-incubation phase was small (less than 0.1 nM), the

preincubation step had no effect on the extent of release during the measuring step (Figure 4.6C). This is

consistent with our findings that the kinetics of Bax recruitment are highly dependent on liposome con-

centration (Figure 4.2), with low liposome concentrations resulting in incomplete recruitment during

the 2 hour incubation. However, intermediate concentrations of unlabeled liposomes almost completely

suppressed pore formation, consistent with near-complete recruitment of Bax followed by slow dissoci-

ation (Shamas-Din et al., 2014) (Figure 4.2). When concentrations of unlabeled liposomes were substan-

tially higher than the labeled liposomes pore formation was additionally suppressed in the controls due

to competition between the two liposome populations for soluble Bax. These results indicate that Bax

is substantially depleted from solution after incubation with membranes, which is sufficient to prevent

dye release from any vesicles remaining unpermeabilized.

4.2.9 The distribution of Bax among liposomes cannot be independent

The above results indicate that given sufficient time, virtually all soluble Bax will be incorporated into

membranes (Figure 4.2). The fraction of permeabilized liposomes at steady state therefore yields a mea-

sure of the extent of permeabilization obtained for a known amount of membrane-bound Bax. In prin-

ciple, this information could be used to estimate the minimal stoichiometry of the pore. However, esti-

mating the “threshold” number of Bax monomers required to form a competent pore not only depends

on knowledge of the concentration of membrane-bound Bax, but also the distribution of Bax molecules

across the liposome population. The most straightforward assumption is that Bax distributes indepen-

dently among liposomes, that is, the insertion of Bax in a liposome is independent of whether there is

any pre-existing inserted Bax. This type of mechanism gives rise to a Poisson distribution of Bax across

liposomes (Figure 4.7A). Liposomes containing greater than the minimal number of Bax molecules for

a pore will ultimately be permeabilized, while those below this threshold will remain intact. As the Bax
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Figure 4.7: Scaling of maximal permeabilization with Bax/liposome ratio.

(A) The Bax/liposome ratio defines themean and variance of a Poisson distribution of activated Bax across liposomes. Theminimum

pore size (vertical line) defines a threshold for permeabilization, shown here at four subunits. As the average Bax/liposome ratio in-

creases, the fraction of permeabilized liposomes increases until reaching 100% (inset plot).

(B) Scaling of predictedmaximum dye release (fittedFmax values) at varying Bax concentrations after incubation of Bax with 5.2 nM
liposomes at 43C for 3 hr (blue line; error bars indicatemean and standard deviation of three experimental replicates). Green line

shows the predicted scaling of themaximum release for Poisson-distributed Baxwith aminimum pore size of four; red line shows the

best Poisson-distribution fit (minimum pore size of 33).

(C) Predictedminimum pore size at each Bax concentration for the data in (B) calculated using the inverse survival function of the

Poisson distribution (Methods). The predicted values are fit with a linear equation (red); dashed portion shows extension towards the

intercept of 4.2 subunits at [Bax] = 0. Gray dashed line line shows the smallest value inferred directly from an experimental measure-

ment (6 subunits).

concentration is increased, the Bax distribution broadens and the mean increases; at high Bax:liposome

ratios, all liposomes will be above the threshold, corresponding to full permeabilization (Figure 4.7A,

inset).

We performed dye release experiments at a variety of Bax concentrations and estimated the steady-

state permeabilization levels by fitting the data with Eq. 4.8. The data show that Fmax scales slowly with

Bax concentration, with only incremental increases inFmax for fold-change increases in Bax (Figure 4.7B).

Models of pore formation assuming a Poisson distribution of Bax showedmuch sharper increases in Fmax

and could not fit the data, indicating that the distribution of Bax across liposomes cannot be independent

and is influenced by the presence of pre-existing pores.

4.2.10 The Bax pore has a minimum pore size of approximately four subunits

At low Bax/liposome ratios a soluble Bax molecule is more likely to encounter a liposome with no pores

than one with a pre-existing pore, thus making recruitment by auto-activation the less dominant mech-

anism. Under these conditions the distribution of Bax among liposomes is closer to being independent,

allowing inference of the minimal pore size.
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We therefore performed a dye release experiment with relatively high liposome concentration (5.2 nM)

and Bax titrated over a range of Bax/liposome ratios from approximately 2 to 100. Each dye release curve

was fitted with Eq. 4.8 to extract the predicted Fmax at steady state. As shown in Figure 4.7A, a given

Bax/liposome ratio defines a Poisson distribution, with themeasured Fmax values defining the fraction of

the distribution below the threshold pore size. The Fmax values can therefore be used to infer a threshold

pore size at each concentration, with the results shown in Figure 4.7C (Methods). Strikingly, the pre-

dicted pore sizes fell on a line with higher Bax/liposome ratios resulting in higher predicted pore sizes,

an additional indication of the diminishing fractional permeabilization associated with high Bax concen-

trations. Extrapolation to the low-Bax limit by linear fitting yielded an intercept of 4.2 subunits for the

minimum pore size.

The lowest predicted pore size from a measured Fmax value was 6 subunits, associated with the lowest

Bax/liposome ratio of roughly 2 (Figure 4.7C); this value therefore represents an upper bound. Con-

sidering these bounds and the evidence that Bax primarily forms oligomers of dimers (Subburaj et al.,

2015; Kim et al., 2006), we interpret these results as indicating a minimum pore size of four subunits.

Additional experimentation at low Bax concentrations is required to further validate this estimate and to

clarify the types of auto-activation mechanisms that produce the scaling curves seen in Figure 4.7C.

4.3 Discussion

Many aspects of the mechanism of apoptotic pore formation mechanism have been made clear in recent

years: an activator BH3-only protein, such as truncated Bid or Bim, is generally required to trigger a series

of conformational changes in either Bax or Bak that allow it to oligomerize and form pores in the mem-

brane. Recent structural studies of Bax and Bak oligomers have provided evidence of the conformations

of these pore-forming molecules in the membrane (Czabotar et al., 2013; Bleicken et al., 2014). However,

despite progress in determining the structure of Bcl-2 proteins and their network of interactions, there

remain a number of unresolved questions. In addition towell-recognized gaps in the knownmechanism,

there are also inconsistencies and ambiguities that manifest when integrating information from disparate

studies.
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In this study we use data from in vitro experiments to develop dynamic models of the apoptotic pore

formation process that refine and integrate knowledge about mechanisms. We characterize the roles of

lipid, Bax and Bid abundance in controlling the rate and extent of Bax insertion, identifying a previously

unknown stoichiometric limitation on the ability of cBid to bind membranes, which we attribute to

electrostatic interference among Bid monomers. Dye release experiments indicate that the Bax pore is

stable and grows by recruiting Bax monomers but has a minimum size of roughly four subunits.

Bax auto-activationhas beenproposed toplay amajor role in the “all-or-none”nature ofmitochondrial

permeabilization (Cui et al., 2008). In this interpretation, Bax auto-activation is responsible for propa-

gating an initial pore formation event into widespread permeabilization across the entire cell. While the

initial propensity for permeabilization would be low, it would accelerate as positive feedback triggered

further increases in Bax recruitment and permeabilization. This interpretation is not supported by our

data, which shows that the rate of Bax recruitment to membranes is well-fit by a single exponential func-

tion, indicating a constant recruitment rate (Figure 4.2). In addition, the rate of permeabilization does

not accelerate but instead decreases with time (Figure 4.6). At the same time, we show that pore forma-

tion is not independent, suggesting a role for auto-activation in favoring recruitment of Bax to existing

pores (Figure 4.7). We therefore conclude that the primary role played by Bax auto-activation is the local

expansion of pores rather than the dissemination of activated Bax to other mitochondrial sites. As our

data show, this mechanism reduces the extent of permeabilization in the population of vesicles due to the

highly stable recruitment of Bax to membranes.

One difficulty in applying the knowledge gained from quantitative studies of Bax pore formation in

vitro to interpreting data from cells has been the apparent difference in timescales between the two set-

tings: Bax pore formation in vitro occurs over a span of 1-3 hours (e.g., Figure 4.6), whereas in cells,

widespread permeabilization of mitochondria occurs in minutes (Goldstein et al., 2000; Rehm et al.,

2002; Albeck et al., 2008a). Protein constituents of the mitochondrial outer membrane that are lacking

in the in vitro setting are one potential cause of this discrepancy (Kushnareva et al., 2012; Schafer et al.,

2009). While mitochondrial proteins undoubtedly play a role, it is noteworthy that permeabilization of

mitochondrial outer membrane vesicles and depolarization of mitochondria by BH3 peptides also take
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far longer than permeabilization in cells (Kushnareva et al., 2012; Sarosiek et al., 2013).

We speculate that amajor cause of the difference in timescales is the different relationship between lipid

abundance and compartment size between the two settings. In the in vitro setting (whether synthetic lipo-

somes, outer membrane vesicles, or isolated mitochondria), the vesicle compartments tend to be smaller

than the (possibly highly interconnected)mitochondrial compartments of cells. Moreover, an increase in

the amount of vesicles in vitro not only increases the recruitment of Bid and Bax to membranes (thereby

accelerating pore formation, Figure 4.2) but also increases the number of compartments, which decreases

the overall (proportional) permeabilization. In the cell, on the other hand, mitochondria occupy roughly

10% of the cell volume but number only in the hundreds, with the number changing dynamically due to

fission and fusion (Posakony et al., 1977). The cell is therefore a high lipid, low compartment number en-

vironment, in which Bid and Bax recruitment is favorable and fractional permeabilization occurs rapidly.

In this interpretation, the “all-or-none” nature of pore formation is attributable not to auto-activation,

but instead to “pore overshoot” resulting from the rapid recruitment of farmoreBax than required toper-

meabilize all mitochondrial compartments (Dussman et al., 2009; Albeck et al., 2008b). In future work,

we aim to determinewhether ourmodels, after calibrating to in vitro data, can quantitatively predict rates

of permeabilization in cells after accounting for these differences inmitochondrial size and concentration.

It is currently unknown whether our finding that Bid recruitment to membranes is limited at high

Bid:membrane ratios also holds for binding to native mitochondrial membranes, or for other activators

such as Bim. However, electrostatic interactions with negatively charged headgroups have been shown

to play a role in determining the affinity of both Bim and cBid for membranes, suggesting that unfa-

vorable interactions at surfaces could also affect both proteins (Shamas-Din et al., 2015). The degree of

electrostatic interference is likely to be sensitive to the size (and hence the curvature) of the vesicles used,

with smaller vesicles resulting in greater electrostatic interference among proteins, allowing us to test this

hypothesis further. Addressing these questions is a focus of future work.

In fitting our mechanistic models to our Bax titration data, we found that mechanisms tended to be

corroborated across datasets. For example, our Bax titration data revealed that NBD-126C-Bax insertion

was coincidentwith dimerization (Figure 4.3D). The same dimerizationmodels also showed dramatically
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improved fit for our initial liposome titration dataset even though simpler binding models M1 and M2

had already shown very good fits (Figure 4.3E). This shows that kinetic data of this type tends to contain

considerably more information about mechanisms than can be extracted by qualitative interpretation.

We expect that this type of analytical approach will become increasingly necessary for interpreting large

datasets involving complex cellular perturbations (e.g., Vidović et al., 2014). Even in our relatively simple

in vitro setting, we find that the context—concentrations of various constituents—dramatically affects

the mechanisms that predominate, with each experiment therefore yielding only a partial view of the

overall mechanism. Systematic evaluation of models against complex datasets helps to assemble these

partial views into a coherent mechanistic picture.

4.4 Methods

4.4.1 Protein purification and fluorescence spectroscopy

Procedures for purifying and labeling cBid and Bax, preparing lipid vesicles, and measuring NBD and

ANTS by fluorescence spectroscopy were described in detail previously (Kale et al., 2014; Lovell et al.,

2008). Kinetic measurements were made on a FlexStation III (Molecular Devices).

4.4.2 Modeling and data analysis

Raw data and all code are available in an open-source format on GitHub at https://github.com/

johnbachman/tBidBaxLipo. Mechanistic models were specified using PySB (Lopez et al., 2013). Nu-

merical simulation and parameter estimation was performed using Markov chain Monte Carlo as de-

scribed in Chapter 3. Broad prior distributions were used based on the types of rate constants and previ-

ously published estimates.

Experimental error for each curve in the titrations was estimated by fitting a polynomial function to

the latter part of the curve as it approached equilibrium and then calculating the standard error of the

residuals after checking that the residuals followed a Gaussian distribution.

149

https://github.com/johnbachman/tBidBaxLipo
https://github.com/johnbachman/tBidBaxLipo


4.4.3 Models of Bid-membrane binding

For the lipid binding site model of Bid-membrane binding, we used an exact solution for competitive

binding between two ligands to a target (Z. X.Wang, 1995). In this model, the target “receptor”molecule

is denoted P, B is the labeled ligand, andA is the titrated competitor. We assume that the addition of the

label does not affect binding, that is, that the affinity ofA and B for P is equal. We also assume that the

spectroscopic signal of the labeled ligand B (Alexa 568 cBid in this case) is unaffected by binding to P.

The mathematical expression for the concentration of the bound, labeled complex [PB] in terms of

the ligand-target affinityK and the initial concentrationsA0, B0, and P0 is given by equation 15 of Wang

(Z. X. Wang, 1995). The predicted FRET signal is then

FRET =
Feff

B0
([PB] +NB0) (4.9)

with Feff denoting the FRET efficiency associated with the bound complex PB andN the degree of non-

specific binding of B. The resulting model has three parameters: P0, the number of (lipid) binding sites,

Feff andN.

The Gouy-Chapman model of membrane binding was drawn from Schwarz and Beschiaschvili, 1989.

In this model, the partitioning of cBid between solution and membranes is described by

r = (Γ/α) · [cBid0] (4.10)

where r is the concentration of membrane-bound cBid, [cBid0] is the total solute (cBid) concentration,

Γ is the (concentration-independent) partitioning coefficient and α is an activity coefficient describing

unfavorable interactions among the solute molecules.

Application of the Gouy-Chapman theory gives an expression for the activity coefficient α,

ln α = 2v · sinh−1(vbr) (4.11)

in which v is the effective number of charges per cBid monomer and b is a dimensionless coefficient de-
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pendent primarily on the ionic strength of the solution (Schwarz and Beschiaschvili, 1989).

4.4.4 Calculation of minimum pore sizes

A Poisson distribution is defined by the parameter λwhich specifies the mean number of “instances” (in

this case, activated Baxmolecules) observedwithin a given “interval” (in this case, a single liposome). The

probability of observing k instances within an interval (i.e., a liposome with k Bax molecules) is given by

the probability mass function:

λk

k! e
−λ (4.12)

For a givenλ, the cumulative distribution function (CDF) of the Poisson distribution givesP(X ≤ k),

the probability of observing k or fewer instances within an interval—here, the probability of a liposome

with k or fewer Baxmolecules. If we define r = k+1 as our threshold pore size, theCDF gives the fraction

of liposomes expected to remain unpermeabilized.

The survival function, SF(k;λ) = P(X > k) = 1 − P(X ≤ k), therefore gives the probability of a li-

posome having greater than kBaxmolecules. For a givenminimumpore size r and Bax/liposome ratio λ,

the survival function SF(r− 1;λ) therefore returns the expected dye release. The inverse survival function

ISF(P;λ) returns the value of k corresponding to a given λ and fraction permeabilized P. In this analysis

weuse the implementationof thePoisson ISF in thePythonpackage scipy,scipy.stats.poisson.isf

(Oliphant, 2007).
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5
Conclusion

In this thesis I describe a computational framework for efficiently enumerating alternative biochemical

hypotheses and apply it to analyzing the dynamics of apoptotic pore formation. Use of an in vitro ex-

perimental system allows systematic experimentation involving many different Bax mutants and wide

variation of the concentrations of components. Collections of programmatically enumerated alternative

models are calibrated against these complex datasets, identifying and clarifying pore formation mecha-

nisms.

The in vitro experiments in this thesis highlight the degree to which mechanisms governing dynamics

of biochemical systems are context dependent even in highly simplified settings. For example, the Bax

insertion kinetics in Chapter 4 were found to depend on Bax/membrane, Bid/membrane, Bid/Bax, and

Bax/Bax interactions, with the relative contributions of these mechanisms depending on precise concen-

trations. At the same time, we showed that these influences on the dynamics could be accounted for by

assembling and refining an ensemble of models.

There are two practical challenges in making these approaches scale to account for the more extensive
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and challenging context-dependence in cellular settings. The first is to developways tomakemodelsmore

trustworthy; the second is to make the model building process more efficient.

5.1 Making models more trustworthy

Trustworthiness, for a model, refers to the confidence a human user has in using the model in a particular

context. This depends on multiple factors, including knowing answers to the following questions:

1. What elements are in the model?

2. Why does the model include the elements that it does?

3. What is the range of phenomena covered by the model?

The first of these questions deals with model transparency. In Chapter 2 I discussed how concep-

tual approaches from programming can make models more transparent and thus more trustworthy and

reusable. The second question, about why the model contains what it does, demands an understanding

of the evidentiary basis behind the mechanistic assertions in the model. This depends on a detailed ac-

counting for the empirical evidence supporting the facts in the model, grounded in the primary scientific

literature.

Drawing again fromapproaches to computer programming, I propose that this requirement formodel

trustworthiness be met by adopting literate programming, a style of programming in which the textual

description of the program’s elements, written for human readers, is the primary organizing feature, with

the program code embedded within it (Knuth, 1984). A “literate model” for biology would be similar to

an extensive review of biological system, with verbal descriptions of mechanisms supported by references

to experimental evidence. These mechanisms would then be encoded into one or more representations

in a formal modeling language, allowing the human reader to compare the formal and informal repre-

sentations side-by-side. One example of this type of approach is the Yeast Pheromone Model, developed

by Ty Thomson (http://yeastpheromonemodel.org). We are currently developing this modeling

approach in the context of an extensive model of the Ras signaling pathway (http://rasmodel.org).
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The third criterion for model trustworthiness is concerned with validating the model and establishing

its explanatory scope. In the traditional sense, validation involves fitting a model to data to see if (or how

well) it fits. However, as models grow more complex, it becomes important to know not only whether

the model explains the dataset currently being considered, but also if the model is consistent with prior

observations from the literature. This involves setting up in silico simulations of previous experiments to

see if the model can retrodict their findings.

The purpose of this more extended validation is two-fold: first, to determine whether the conclusions

of a model are consistent with prior findings. If so, this increases confidence in the model’s ability to

generalize, making its future predictions more trustworthy. For example, in Chapter 4, I showed that

cBid/liposome binding models calibrated to data from a cBid titration experiment made predictions for

a liposome titration experiment consistent with previously published results.

The second goal of doing this type of validation is to establish the explanatory scope of a model—

evaluating models against a wide variety of phenomena reveals the types of questions that they can be

used to answer. In Chapter 4 I showed that the simplest activationmodel (M1) was effective at predicting

Bax recruitment for a variety of liposome concentrations, but not for awide variety of Bax concentrations

or for activators other than the BimBH3 peptide. Empirically establishing the scope of the simplermodel

allows it to be used with confidence in the appropriate context.

Ultimately, models could be subject to an ongoing, semi-automated validation process, encompassing

both new and previous data. In an analagous matter to what is known as regression testing in software, a

suite of tests could reveal not only where models fail to meet the current specifications, but also identify

when the addition of features have decreased performance on prior datasets.

Extensive documentation and ongoing validation would allow models to be brought to bear more

confidently on awide variety of complex problems in biology. Gaps inmodels could be used to efficiently

identify new hypotheses, and model predictions could be used to identify new phenomena and design

effective experiments, accelerating the mechanistic discovery process.
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5.2 Enlisting machines for efficient modeling

Biological modeling is a very time and labor-intensive process. Modeling requires extensive knowledge

not only in a particular biological subfield but also of modeling tools and formalisms. In the pre-systems

biology era, there was a saying that encapsulated the reductionist approach: “one gene, one Ph.D.” In

the current state of modeling in systems biology, an equivalent observation would be “one model, one

Ph.D.”

There has been increasing interest in using machines to build models automatically, either from the

scientific literature or from pathway databases (Büchel et al., 2013; Cohen, 2015). Many tasks in mod-

eling are routine and repetitive, especially as they relate to encoding names and features of genes and

proteins. Modeling software could be developed to automatically assemble, for any given gene, an agent

structure suitable for rule-based modeling, including relevant active sites, interaction domains and post-

translational modification sites. Machines could also be enlisted to search the literature for the evidence

behind interactions chosen by the modeler (Kemper et al., 2010). Machine assistance would help reduce

unintentional bias in model scope arising mainly out of human modelers’ necessarily limited domain

knowledge. “Recommender” software could make intelligent suggestions about the genes, proteins, and

interactions that should be considered for a model of a particular phenomenon. The semi-automated

model validation described above could itself be considered a form of machine-assisted modeling.

Current approaches to machine-assisted modeling function largely as one-way pipelines, processing

large corpora to extract interactions or assemblemodels (Büchel et al., 2013). A complementary approach

would be for the biologist to engage with an intelligent agent in a dialog, interacting collaboratively to

construct and refine models of biological processes (Carvunis and Ideker, 2014). Such an approach could

be very powerful as it would allow the software agents to refine the results of their analyses based on the

role of the human user and the goals of the interaction, rather than simply returning a large “hairball” for

the human to prioritize.

The prospect of using sophisticated software to build models raises questions about what the actual

model artifactwould be in this scenario. In the programmatic approach tomodeling described inChapter

2 the model artifact is a computer program, which contains within it all of the mechanistic elements
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deemed relevant. In a machine-modeling scenario, the model artifact results from human guidance to

a software pipeline that extracts and assembles mechanistic elements into a self-consistent model. The

guidance given to themachine is analogous to a search query, and themodel that is produced to a complex

set of results. For a human user, the search term is too vague to comprehend the resulting model, while

on the other hand the machine-assembled result may be too detailed and complex.

By leveraging sophisticated software to help build and curate models, mechanistic explanations of bio-

logical processesmay be able to scale tomeet the growing demands of explaining larger andmore complex

datasets. Scientists could efficiently explore mechanistic explanations of data formally without having to

have deep expertise in neighboring subfields of biology or modeling methods. If successful, such tools

could streamline both basic and applied research in biomedicine and serve as the foundation for applica-

tions in personalized medicine.
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Most cellular processes rely on large multiprotein complexes that
must assemble into a well-defined quaternary structure in order
to function. A number of prominent examples, including the 20S core
particle of the proteasome and the AAA+ family of ATPases, contain
ring-like structures. Developing an understanding of the complex
assembly pathways employed by ring-like structures requires a char-
acterization of the problems these pathways have had to overcome
as they evolved. In this work, we use computational models to
uncover one such problem: a deadlocked plateau in the assembly
dynamics. When the molecular interactions between subunits are
too strong, this plateau leads to significant delays in assembly and
a reduction in steady-state yield. Conversely, if the interactions are
too weak, assembly delays are caused by the instability of crucial
intermediates. Intermediate affinities thus maximize the efficiency
of assembly for homomeric ring-like structures. In the case of hetero-
meric rings, we find that rings including at least one weak interac-
tion can assemble efficiently and robustly. Estimation of affinities
from solved structures of ring-like complexes indicates that hetero-
meric rings tend to contain a weak interaction, confirming our
prediction. In addition to providing an evolutionary rationale for
structural features of rings, ourwork forms the basis for understand-
ing the complex assembly pathways of stacked rings like the protea-
some and suggests principles that would aid in the design of
synthetic ring-like structures that self-assemble efficiently.

computational modeling ∣ kinetic deadlock ∣ ring complexes ∣
self-assembly kinetics ∣ glassy dynamics

The vast majority of cellular processes, from signal transduction
to the synthesis and degradation of polypeptide chains, rely on

the action of large macromolecular complexes (1). In order to
carry out their functions, these complexes must adopt a well-
defined quaternary structure (1–5). The efficient and effective
assembly of these structures from a set of monomeric subunits is
thus critically important to living systems. Although experimental
work has revealed many details of complex assembly pathways
(4–7), conceptual issues remain that are best understood through
the analysis of models.

One such issue concerns the evolutionary pressures that have
shaped assembly pathways. A similar question has arisen before
in the theoretical study of protein folding (8, 9). In that case, it
was helpful to consider a “null model,” often called the “Levinthal
paradox” (8), which immediately suggested a kinetic problem that
protein sequences must overcome in order to fold quickly. Seen
from that perspective, evolution has sculpted free energy land-
scapes that prevent the folding process from degenerating into
a random search of conformational space (8, 9) or from producing
overly stable intermediates (10–13). In the case of macromolecular
assembly, the question revolves not around the free energy land-
scape that characterizes sequences that fold efficiently, but rather
the evolution of the chemical potential landscape of a complex
molecular interaction network that supports efficient assembly.
If such “assembly landscapes” have been shaped by evolution, what
problems have they evolved to overcome or avoid?

In this work, we begin to approach this question for a subset of
macromolecular structures; namely, those consisting of rings.

Rings represent a common “motif” in large macromolecular
complexes (14), perhaps because of their general thermodynamic
stability (15, 16) (see SI Appendix, Section 1) and their inherent
symmetry. They are thus found in the context of signaling net-
works (e.g., the apoptosome; refs. 17 and 18), chaperones (e.g.,
GroEL; ref. 19), protein degradation [e.g., the proteasome (refs. 5
and 7), and ClpP (ref. 20) in bacteria], pore-forming endotoxins
[e.g., the protective antigen (PA) of Bacillus anthracis; ref. 21],
and many other biological processes. Previous studies employing
assembly models of ring-like structures have focused on a few
specific examples, such as ClpA (22) (an AAA+ family member)
and the apoptosome (23). In this work, we focus on a simple but
general model of ring assembly, a null model that allows us to il-
lustrate a tension that arises between energetically local interac-
tions and global topological constraints. The barriers induced by
this tension can have a strong impact on assembly efficiency, and
by understanding how such barriers can be overcome, we provide a
basic insight into the evolutionary pressures that have shaped the
assembly of a broad class of macromolecular structures.

Our principal finding is the existence of a “deadlocked pla-
teau” in the assembly dynamics of rings and a simple strategy for
avoiding it. Depending on the strengths of the molecular inter-
actions between the subunits of the ring, this plateau can have a
significant effect on the assembly efficiency of the structure. This
is true both for cases in which assembly occurs from an initial
condition in which all subunits are monomers, or when consider-
ing a steady-state scenario with constant synthesis of monomers
and degradation/dilution of complexes. Assembly deadlocks are
thus likely to exhibit significant evolutionary pressures on the
interaction strengths in the ring. We have also found that, for het-
eromeric rings where the affinities between neighboring subunits
can vary independently, inclusion of one or more “weak” inter-
actions in the structure improves assembly efficiency dramati-
cally. This computational observation leads us to predict that
heteromeric ring-like structures will generally contain one inter-
action that is significantly weaker than the others. We tested this
prediction by analyzing the solved structures of all heteromeric
three-membered rings, and we found that the vast majority of
them do in fact contain at least one weak interaction. Our work
thus provides an evolutionary rationale for the structural features
of ring-like complexes, in addition to suggesting simple principles
that could prove useful in the design of self-assembling nano-
structures (24).
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Results
Constructing a Model of Ring Assembly. The ring-like protein com-
plexes we model in this work exhibit fairly rigid interaction geo-
metries (such as the structure in Fig. 1A) and a well-defined
number n of subunits. Assembly occurs due to binding reactions
between intermediates ranging in size from 1 (monomers) to
n − 1. We account for the geometry of rings by distinguishing
three cases for the association of two intermediates with lengths
k and l: (i) If kþ l < n, the binding reaction produces another
intermediate species (Fig. 1B); these reactions occur with a
uniform association rate α and a dissociation rate β that depends
on the strength of the noncovalent bond being formed. (ii) If
kþ l ¼ n, the interaction results in the formation of a ring struc-
ture; these reactions involve the (essentially) simultaneous
formation of two interfaces (16) (Fig. 1C). Because rings are in-
herently very stable (15, 16) (see also SI Appendix, Section 1), the
reverse rate for these reactions (γ) is generally very small. Ring

formation is thus essentially irreversible for most of the para-
meters considered in this work, and the equilibrium yield of
the ring approaches 100%. (iii) If kþ l > n, the interaction would
yield a protein complex with more than n components, resulting
in a steric clash that prevents the interaction from occurring
(Fig. 1D).

The rings we consider also have a “sidedness”—that is, the
monomers in the ring are not themselves internally symmetric;
this characterizes most ring-like structures observed in nature
(14). As a consequence, the subunits in our model have a distinct
left and right side, and interactions can only occur between an
interface on the right of one subunit and an interface on the left
of another.

Our analysis largely focuses on the simplest case of ring assem-
bly, where the parameters α, β, and γ in Fig. 1 depend only on the
identity of the interface(s) involved. In this case, it is straightfor-
ward to derive from the reaction classes described above a system
of ordinary differential equations (ODEs) describing the assem-
bly dynamics of a ring of length n. The process for deriving these
ODEs for both homomeric rings (where the individual subunits
are indistinguishable) and heteromeric rings (where each subunit
is distinct from every other subunit) is summarized in Methods
and is described in detail in the SI Appendix, Section 2. The ODEs
we obtain are integrated numerically using MATLAB (25) for a
given set of parameters (i.e., monomer concentrations, associa-
tion and dissociation rate constants; see SI Appendix, Section 2.6).

The Assembly Dynamics of Homomeric Rings. Fig. 2A depicts the
assembly dynamics obtained from our model of a simple homo-
meric three-membered ring starting from an initial condition
consisting of only monomers. When interaction affinities are
very strong, the curves exhibit a characteristic “plateau.” On very
short timescales, monomers interact rapidly to form dimers; those
dimers can subsequently interact with other monomers to form
the full ring. After this initial phase, however, the monomers are
depleted from the system but a significant concentration of di-
mers persists. Because these dimers cannot interact productively
either with each other or with the full rings (Fig. 1D), the system is
deadlocked until it reaches timescales on which dimers dissociate
readily. At that point, monomers released by dissociation can in-
teract with the remaining dimers, resulting in the formation of
the full ring. For longer rings, the plateau occurs at lower concen-
trations of the full ring structure; thus, whereas approximately
65% of three-membered rings are formed in the plateau phase,
only approximately 35% of seven-membered rings have formed at
that point (see SI Appendix, Section 4.1.2 and Figs. S6 and S7).

The existence and duration of this deadlocked plateau strongly
depends on the parameters of the system. To quantify that depen-
dence, we considered the time TX it takes a system with an initial
condition of 100% monomers (all at equal concentration) to
reach a state where X% of monomers are found in rings. We have
plotted T99 as a function of the uniform interaction strength
along the ring (represented by the dissociation constant for those
interactions, Kd ≡ β∕α) for various initial monomer concen-
trations (Fig. 2B). Each concentration exhibits an affinity that
minimizes the time to 99% yield (i.e., T99). Stronger interactions
result in considerably longer assembly times: In this “dissociation-
challenged” regime, the duration of the deadlocked plateau
increases with increasing affinity (see SI Appendix, Fig. S4). How-
ever, weaker interactions also result in longer assembly times: In
this “association-challenged” regime, most dimers do not persist
long enough to interact with monomers to create full rings. The
value of the optimal affinity is proportional to the concentration
of monomers in the system (see SI Appendix, Fig. S9).

Although the impact of deadlock on assembly can be quite
dramatic, one may ask if this kinetic phenomenon is likely to be
important for any given ring. In some cases, such as the apopto-
some (23), a ring structure must be populated quickly as a part

A

B

C

D

Fig. 1. Schematic of ring assembly. (A) A three-membered ring (X-ray struc-
ture from Protein Data Bank ID 2JB8) on the left is represented on the right as
a graph involving three proteins, each with two binding interfaces (the small
circles on the periphery of the nodes). (B) A pair of monomers bind to form a
dimer, which represents the case where k þ l < n. The forward (backward)
rate constant of the interaction is denoted α (β). (C) A monomer binds to
a dimer yielding the full three-membered ring, which represents the case
where k þ l ¼ n. The forward rate of this reaction is taken to be α as in B, but
the backward rate constant (γ) of the reaction is different. Because two in-
terfaces are formed on the right-hand side of the reaction, γ ≪ β (see SI
Appendix, Section 1). (D) Two dimers attempting to bind—i.e., k þ l > n.
These reactions do not occur because of steric hindrance.
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of the propagation of a signal in a signaling network. In that
scenario, a plateau could be detrimental because a large fraction
of the monomers present in the system may not incorporate into
the active molecule on the timescale of the response to signal
(23). The interfaces in such rings may thus be under considerable
evolutionary pressure to minimize the assembly time of the mo-
lecule. However, not all signaling molecules may be sensitive to
short-timescale yield. If signaling is functional with the fraction of
assembled structures at a level “below” the plateau, then there
may be little evolutionary pressure on the affinities in the ring
(see SI Appendix, Sections 4.1.1 and 4.1.3).

Not all rings in cells may need to assemble quickly; rings are
often found as constitutively active and stable assemblies (such
as the proteasome or GroEL) that are typically being lost from
the cell by active protein degradation and/or dilution arising from
cell growth and division. In this case, monomers must be con-
stantly synthesized and assembled into the active structure in
order to replace those that are lost. To explore the effect of the
phenomena described in Fig. 2B on assembly when accounting
for synthesis and degradation, we considered two models. In one
case, every monomer in the system has the same probability of
being degraded, regardless of the molecular context in which that
subunit is found—we term this “model A.” This case represents a
likely scenario for active degradation by certain proteases (26,
27). In the second case (“model B”), all complexes have the same
probability of being degraded, which corresponds to a situation in
which all complexes are being diluted due to rapid cell growth as
well as the activity of some proteases (26). In both models, mono-
mers are synthesized at a constant rate; a full description of these
models can be found in the SI Appendix, Section 2.4.

In this situation, steady-state assembly yield represents essen-
tially the “return on investment” in the energy required for mono-
mer synthesis because monomers that do not incorporate into the
active structure are essentially wasted. In Fig. 2C, we plot the
steady-state yield of the full complex vs. affinity for a homomeric
three-membered ring under model A. The synthesis and degrada-
tion parameters in this case were chosen to represent the average
concentration and half-life of proteins in Saccharomyces cerevisiae
(28, 29) (approximately 480 nM and 42 min, respectively). Inter-
mediate affinities maximize yield just as they minimize assembly
time, although the magnitude of the effect depends on the para-
meters. In particular, if degradation rates become very low, the
system approaches equilibrium and the greater thermodynamic
stability observed for stronger interactions leads to higher yields
for those structures (30). The results for model B are similar to
those for model A, but with a smaller relative increase in yield
(see SI Appendix, Section 4.2).

Heteromeric Ring Assembly and the Benefit of Weak Interactions. In
heteromeric rings, every single subunit represents a distinct pro-
tein. In our models, all of the interactions between proteins along
the ring are considered to be specific; that is, a subunit will only
bind with its two neighboring proteins and not with any of the
other subunits in the ring. When all of the subunit concentrations
along the ring are equal, and all of the affinities between subunits
are equivalent, one can show that the assembly dynamics of the
heteromeric case is actually equivalent to the dynamics of homo-
meric rings described above (see SI Appendix, Section 2.3).

A major difference between homomeric and heteromeric
rings, however, is that all of the interaction strengths along a het-
eromeric ring can be varied independently. We thus examined
how changing the relative affinity along the ring influences assem-
bly efficiency by considering a set of seven different affinities
(Kd ¼ 10−12;10−11;…;10−6 M) and constructing all of the unique
configurations for a heteromeric ring of length n, where each of
the affinities is chosen independently from that set (see SI
Appendix, Section 4.3.1).
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Fig. 2. Assembly of a homomeric three-membered ring. (A) In this graph,
we consider the percentage of monomers in the various association states
(monomer, dimer, and trimer) as a function of time. The affinities are uni-
formly very strong (Kd ¼ 10−12 M). The data are plotted on a logarithmic time-
scale because a linear scale obscures the existence of the plateau phase. The
on-rate α ¼ 2.53 × 106 M−1 s−1 and total subunit concentration XT ¼ 400 nM.
(B) Variation in assembly time (measured by T99 as described in the text) with
affinity (Kd) for various initial monomer concentrations XT . All concentrations
exhibit a distinct minimum in T99; the Kd at which this minimum occurs is pro-
portional to the total monomer concentration (see SI Appendix, Fig. S9). α as in
A. (C) Steady-state yield (defined as the fraction of monomers in the full ring)
as a function of affinity when subunit synthesis and degradation are taken into
account according to model A (see SI Appendix, Sections 2.4 and 4.2). The
synthesis and degradation parameters were chosen to yield the average con-
centration and half-life of proteins in Saccharomyces cerevisiae (28, 29), ap-
proximately 480 nM and 42 min, respectively. The solid curve represents an
analytical solution of the steady-state yield and the circles represent steady-
state results from the numerical integration of model A (see SI Appendix,
Sections 2.4.1 and 3.2.1). The parameters in this case are α as in A, monomer
synthesis rate Q ¼ 1.31 × 10−10 Ms−1, degradation rate δ ¼ 2.75 × 10−4 s−1,
and XT ¼ Q∕δ ¼ 477 nM.
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In Fig. 3A, we compare the 81 unique configurations for the
heteromeric three-membered ring by ranking each configuration
according to its T99 and its steady-state yield in models A and B.
We find that rings containing one or two weak interactions tend
to produce the highest yields and lowest assembly times in our
models. As discussed above, for a three-membered ring, deadlock
(and the corresponding reduction in assembly efficiency) occurs
when the monomers are exhausted from the system before all of
the dimers have been converted to the full ring. Inclusion of a
single weak interaction, however, results in a single dimer that
has a shorter half-life than the other two. When this dimer dis-
sociates, the monomers that are produced can react with the
other dimers to form the full ring. Inclusion of a weak interaction
renders the system much more robust to changes in total subunit
concentration (Fig. 3B). For heteromeric rings of length 4–7, we
also find that the inclusion of one or more weak interactions is
critical to optimizing assembly times and yield (see SI Appendix,
Figs. S17–S19). As with homomeric rings, when degradation rates
are very low, the system approaches equilibrium and a single
weak interaction no longer produces maximal yields (30).

The findings described in Fig. 3 suggest that rings may be under
evolutionary pressure to exhibit at least one weak interaction,
regardless of whether they need to assemble quickly in response
to signals or assemble with high yield at steady-state (because
most proteins are likely to be degraded at relatively high rates;
ref. 28). To test this prediction, we considered the crystal struc-
tures of heteromeric three-membered rings. Using the database
3D Complex as a starting point (14), we constructed a dataset of
29 such rings (see SI Appendix, Section 5.1, and the SI Table of
Structures) and computed the nonpolar surface area buried in
subunit interactions as a proxy for affinity (31, 32). For each struc-
ture, we determined the weakest (W) and strongest (S) interac-
tion using the software package Parameter Optimized Surfaces
(POPS, ref. 33). The estimated probability density for the ratio
between these two (i.e., W/S) in our dataset is shown in Fig. 4A.
The distribution is approximately bimodal, with an overall aver-
age of 0.31; the majority of ring structures (24 out of 29) are
found in the left peak of the distribution and have ratios consid-
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Fig. 3. Nonuniform affinities. (A) This plot shows the relative performance
of different affinity configurations (gray lines) in the following categories:
assembly time (measured by T99), steady-state yield for model A (Yield,
A), and steady-state yield for model B (Yield, B). Each affinity configuration
is ranked from best (1), to worst (81). The insets display the differences in
magnitude represented by the various ranks for T99 and yield. The configura-
tions containing one or two weak interactions consistently have the best per-
formance. Affinities vary; other parameters as for Fig. 2C. (B) Dependence of
T99 on total subunit concentration for a configuration with three uniform
interactions (Kd values of 10−10 M) and a configuration with one weak inter-
action (two interactions with Kd ¼ 10−12 M and one with Kd ¼ 10−6 M). The
total thermodynamic stability of the ring is identical in the two cases. The
assembly time is invariably faster with a single weak interaction than with
uniform interactions. The value of parameter α is as for Fig. 2A.
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fidence interval. The data for both rings and chains lie outside that interval.
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erably smaller than 0.5 (see SI Appendix, Section 5.4). Other
estimates of affinity (total buried surface area or Protein Inter-
faces, Surfaces, and Assemblies free energy; ref. 34) yielded simi-
lar results (see SI Appendix, Section 5.3). Interestingly, our buried
surface area results would predict that the “strong” interactions
in rings have an average Kd of approximately 10−12 M, whereas
weak interactions have an average Kd of approximately 10−6 M
(see SI Appendix, Section 5.6), which are precisely the values we
employed in Figs. 2A and 3 A and B.

Because any heteromeric structure with three interactions
will exhibit a weakest and a strongest, we performed two controls
to evaluate the significance of the distribution we observed. In the
first case, we examined the solved structures of chains. Four-
membered chains have the same number of interactions as three-
membered rings, but in contrast to rings their assembly efficiency
is maximized when all of the interactions are uniformly strong
(see SI Appendix, Sections 3.2.3 and 4.3.3). We constructed a
dataset of 33 structures of heteromeric four-membered chains,
whose bimodal W/S distribution is also shown in Fig. 4A. Chains
have an average ratio (0.63) that is significantly higher than that
for rings (p ¼ 10−5 based on a random permutation test; see
SI Appendix, Section 5.4). This difference in average is mostly
due to the fact that the weak interaction in chains is, on average,
much stronger than the weak interaction in rings (p ¼ 6 · 10−5),
as we would expect from our findings on assembly efficiency SI
Appendix, Fig. S25. The majority of chains (22 of the 33) are
found in the right peak of the distribution, and in those cases the
differences are even more pronounced.

As an additional control, we considered a case in which all of
the interactions in the structure were drawn from the same under-
lying Gaussian distribution (see SI Appendix, Section 5.5). Fig. 4B
shows that both rings and chains exhibit average ratios outside
the 95% confidence intervals for this model, indicating that it is
unlikely to describe either case. Although we cannot rule out a
situation in which affinities are drawn from some other under-
lying distribution, Fig. 4B suggests that the parameters of the dis-
tribution could well be under selective pressure to produce rings
that meet the affinity requirements for efficient assembly.

Discussion
A number of physical and biological systems, such as glasses and
proteins, consist of many concurrently and locally interacting
parts. It has long been appreciated that the functional behavior
and evolutionary dynamics of these systems are governed by free
energy landscapes with many local optima arising from conflicting
interactions that are impossible to satisfy simultaneously (e.g.,
“frustration”; refs. 9 and 30). As was shown for the folding of
proteins in the ß-trefoil family (10–13), such situations generate
a trade-off in which the desirable stability of native contacts (i.e.,
interactions present in the final configuration) may conflict with
the need to undo them should they be generated in the “wrong”
temporal order, preventing further native contacts from forming.
Prematurely formed native contacts that are too strong have the
potential to slow down the required backtracking and signifi-
cantly delay the overall folding process. Contacts that are too
weak, however, destabilize the entire folding process.

In this work, we expand this idea into the realm of assembly,
specifically the assembly of rings, where concurrent exploration
of all possible assembly pathways leads to an analogous phenom-
enon, but in the context of a (partially) bimolecular reaction
network. Glassy dynamics arises when earlier reactions use up
components needed in subsequent reactions (35), thus slowing
down the overall kinetics of the final product. Excessive affinity
between subunits causes their rapid sequestration into stable in-
termediates, choking subsequent bimolecular reactions in which
these subunits are needed and causing them to be dominated
by the dissociation of stable intermediates (corresponding to the
“backtracking” in the ß-trefoil case). The inclusion of a single

weak interaction in a heteromeric, three-membered ring opti-
mally solves this conundrum by destabilizing only a single inter-
mediate, whose rapid dissociation regenerates monomers ready
to react with the other, stable dimers to form the full ring. These
results suggest that the chemical potential landscape governing
assembly kinetics must evolve features that avoid reaction dead-
lock, much as free energy landscapes in protein folding must
evolve to destabilize certain intermediates in topologically fru-
strated folds (10–13). Our data analysis of available structures
indicates that the “single weak interaction” strategy is likely em-
ployed by the majority of evolved heteromeric three-membered
rings (Fig. 4A). This strategy might serve as a useful guide in the
design of synthetic ring-like structures that quickly assemble with
high yield (24).

Because assembly arises from a network of bimolecular asso-
ciation and unimolecular dissociation reactions, assembly systems
can exhibit features that are not readily observed in the uni-
molecular isomerization process of protein folding (8, 9). For
instance, overexpressing just one subunit of a three-member het-
eromeric ring severely exacerbates deadlock (see SI Appendix,
Section 4.5), reinforcing the fact that the operant concern in
assembly is a landscape of chemical potential. In addition, assem-
bly systems may employ unique strategies such as subcellular
localization of subunits or extensive allosteric interactions among
subunits (36) to overcome deadlock. Although our preliminary
findings indicate that allostery offers little benefit over the single
weak interaction strategy for single rings (see SI Appendix,
Section 4.4), such approaches may be employed extensively in
more complex structures like the proteasome or ribosome (4–7).
Our work indicates that the problems of intramolecular folding
and intermolecular assembly may share a level of abstraction that
enables lessons from landscape theory (9–13), developed in the
context of protein folding, to assist in rationalizing the complex
assembly mechanisms observed for macromolecular machines.

Methods
Mathematical Model. The mathematical framework we use for modeling the
dynamics of ring assembly is explained in detail in the SI Appendix, Section 2.
We provide a brief description of our approach here. For any homomeric ring
of length n, there are n different molecular species that could be generated,
ranging frommonomers (size 1) to the full ring (size n). The concentration of
any species of size j is denoted Xj . For any species of size j < n, there are six
distinct physical processes that will influence its concentration: (i) an increase
in Xj resulting from the dissociation of any larger intermediate that contains
it as a subcomplex; (ii) an increase in Xj resulting from a binding interaction
between two smaller intermediates; (iii) a decrease in Xj resulting from an
interaction with some other intermediate to form a larger complex, but not
the full ring; (iv) a decrease in Xj when it dissociates to form smaller inter-
mediates; (v) a decrease in Xj resulting from an interaction with its comple-
mentary intermediate to form the full ring; and (vi) an increase in Xj resulting
from the dissociation of the full ring.

For the full ring, there are only two processes that affect its concentration:
(i) an increase in Xn resulting from a binding reaction between two inter-
mediates, and (ii) a decrease in Xn due to the dissociation of the full ring.

From the processes listed above we can derive a system of ODEs describing
the time evolution of the concentration of any intermediate Xj and the full
ring Xn (see SI Appendix, Section 2.1). Heteromeric rings aremodeled inmuch
the same way; the main difference is that there are n distinct molecular spe-
cies for each size class j (depending on the identities of the subunits in the
complex), but only one molecular species for the full ring. Given that only
“neighboring” heteromeric intermediates can interact with one another,
it is straightforward to derive the ODEs for the heteromeric case (see SI
Appendix, Section 2.2). We add synthesis and degradation to the model
(based either on model A or model B) by including a constant synthesis term
(denoted by the variable Q) to the kinetic equation for monomers and the
appropriate first-order degradation terms (with a constant degradation rate
δ; see SI Appendix, Section 2.4). Our model for homomeric chains is described
in the SI Appendix, Section 2.5.

All systems of ODEs were numerically integrated using the “ode15s” func-
tion in MATLAB (25).
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Structural Data. As mentioned in the text, we used the database 3D Complex
as a basis for obtaining both the heteromeric three-membered ring and four-
membered chain structures (14). In both cases, we chose the “QS-90” level of
the 3D Complex hierarchy in order to avoid counting very closely related
structures (which are often simply mutants of a single protein) in the dataset.
Of the 82 rings in this set, many represent situations quite distinct from that
considered in our model. For instance, antibody–antigen complexes often
form three-membered rings (involving the heavy and light chains of the anti-
body, which bind each other and the antigen), but such structures have not
evolved to assemble with all three chains present. Rather, the antibody chains
are assembled first in cells, and only when secreted (or expressed on a cell
surface) do they interact with the antigen. Similarly, a number of “three-
membered” rings in 3D Complex involve proteases bound to a protein inhi-
bitor. In those cases, the two chains of the protease are actually synthesized
as a long polypeptide chain that is cleaved during maturation of the zymo-
gen. The interaction between these chains thus does not arise as a result of a
bimolecular reaction, but rather a unimolecular folding reaction, and as such
the assembly of these structures is not considered in our model. In total, 53 of
the 82 three-membered rings were deemed to not conform to the assump-
tions of our model, leaving 29 structures for the analysis in Fig. 4. Similarly, of
the 104 four-membered heteromeric chains we obtained from 3D Complex,
60 were disregarded for reasons similar to the ones cited for rings, and 11

were actually found to be rings on further analysis. A full description of
the datasets and their construction can be found in SI Appendix, Sections
5.1 and 5.2. A detailed list of all structures included in the datasets, or ex-
cluded for one of the reasons cited, is also provided in the SI Table of
Structures.

Statistical Methods. To test if the affinity distributions we observed exhibited
significantly different averages, we performed a simple permutation test
using the “twot.permutation” function provided by the Data Analysis and
Graphics (DAAG) package in R (37) with 105 replicates. The p value reported
represents the fraction of these permuted datasets with a difference of
means greater than the difference we observed. The Gaussian control in
Fig. 4B was obtained by sampling three affinities from an underlying Gaus-
sian distribution with an average and standard deviation similar to that ob-
served for both our dataset of three-membered rings and our dataset of four-
membered chains. A more detailed description of the affinity distributions
can be found in the SI Appendix, Sections 5.4 and 5.5.
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Section summaries

1—Thermodynamics of rings

In this section we provide a brief explanation for the fact that rings are typically orders of
magnitude more stable than acyclic intermediates.

2—Mathematical model of ring assembly

In sections 2.1 and 2.2 we provide a detailed derivation of the kinetic equations for the assembly
mechanism that defines our model of homo- and heteromeric ring formation. Some care is
required to properly account for combinatorial factors when formulating a model in terms of
monomers with explicit interfaces with elementary interactions and associated rate constants.

In section 2.3 we prove that the equations for homomeric ring assembly are a rescaled version of
those for heteromeric ring assembly when all affinities are equal and all intermediates in a size
class have equal initial concentration.

In section 2.4 we extend our model of ring assembly to include synthesis and degradation. We
consider two variants, A and B, that differ in the degradation mechanism. In model A, each
monomer is removed at a rate proportional to its concentration, implying that the degradation
machinery can pry individual monomers out of a complex (including the full ring). In model B,
each complex is removed at a rate proportional to its concentration.

Since they lack a global geometric constraint, the assembly of chains provides an insightful
contrast to the assembly of rings, not the least because a weak interaction makes the ring case
more similar to the chain case, while retaining the stability intrinsic to rings. In section 2.5 we
define the kinetic equations for assembly and synthesis/degradation of type A and B for
heteromeric chains of four monomers. (We discuss chain optimization in section 4.3.3.)

3—Equilibrium and steady-state solutions for the homomeric 3-membered ring

In section 3.1 we provide an analytical solution for the concentration of the three-membered ring
at equilibrium based on the thermodynamic considerations of section 1. Even for comparatively
weak interactions, small amounts of monomers suffice to push the equilibrium almost entirely to
the side of rings, explaining why the yields we observe are very close to 100% (see also Figure 2A
of the main text) in the parameter regimes we consider.

In section 3.2.1 we derive the equation for the steady-state yield of the three-member ring under
type-A degradation shown in Figure 2C of the main text. In section 3.2.2 we derive the equation
for the steady-state curve of 3-ring assembly under type-B degradation. We compare type A and
type B models in section 4.2.2 (see Figure 12).

In section 3.2.3 we show that, in contrast to the ring case, strengthening the interactions of chains
under a type A degradation scenario always increases yield (see sections 3.2.1 and 3.2.2; see also
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Figure 2C of the main text).

4—Additional results

In section 4.1 we examine the formation of the plateau phase for 3-rings as a function of affinity
and concentration. The plateau begins to appear at a critical interaction strength (depending on
total monomer concentration) and increases in duration with increasing affinity, while its height
remains unaffected. The plateau height, however, decreases with increasing ring size. We also
examine the chevron plots of Figure 2B in the main text as a function of ring size and target
yields.

In section 4.2 we compare in more detail the assembly kinetics of the degradation models A and B
described in section 2.4. We examine the effect of interaction strength and synthesis rate on yield
for models A and B using the equations derived in sections 3.2.1 and 3.2.2. Interactions that are
weaker or stronger than an optimal value reduce steady-state assembly yield.

In section 4.3 we assess the effect of affinity configurations on ring assembly with respect to
efficiency (time to 99% equilibrium yield or steady-state yield for the two versions with
degradation). We first detail how to properly enumerate distinct affinity configurations and then
sample configurations for heteromeric 4-, 5-, and 6-rings, extending the results for 3-rings
reported in the main text. The main observation is that rings with two weak interactions perform
well, presumably because they can assemble as two “quasi-chains” and then snap together. We
compare these results with the case of heteromeric chain assembly, showing that universally
stronger interactions are always better.

While heterogeneity of affinities is one solution to assembly bottlenecks, a strict sequential
(“hierarchical”) assembly—based, for example, on allosteric interactions—might be another, as
touched upon in the main text. In section 4.4 we compare three assembly scenarios (uniform
interactions, one weak interaction, hierarchical), suggesting that the weak interaction scenario
yields the fastest assembly.

In section 4.5 we consider cases in which the concentration of subunits varies in a three-membered
heteromeric ring.

5—Analysis of structural data

In this section we describe the structures in the dataset and the statistical procedures underlying
their analysis, summarized as Figure 4 in the main text.
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1 Thermodynamics of rings

In order to construct a model of ring assembly, we must first have a general characterization of
the chemical reactions that are involved in their formation. For simplicity, we begin by
considering the case of a single, homomeric ring of length n. As discussed in the main text, if two
intermediates, consisting of k and l subunits respectively, react with one another, there are
essentially three classes of reaction:

1. k + l < n
The intermediates react and produce another intermediate of length k + l and a single
non-covalent interaction is formed.

2. k + l = n
The reaction produces a fully formed ring by creating two non-covalent interactions.

3. k + l > n
In our models, we imagine that the molecules in question are fairly rigid with well-defined
interaction angles. Thus, if k + l > n, formation of the product of the reaction would result
in two subunits occupying the same space (see Fig. 1D in the main text). We thus ignore
reactions of type 3.

Type 1 reactions involve the formation of a single non-covalent interaction in a reversible manner:

α

Xk +Xl 
 Xk+l
β

where “Xk” denotes the chemical species corresponding to an intermediate with k subunits. We
denote the forward rate of this reaction (or the “on” rate) as α, and the backward (or “off”) rate
as β. In our work, we do not consider small variations in the on rate that might arise for
intermediates of differing size, and we take α to be a constant for all the type 1 reactions in the
system. We can write the standard free energy of formation of the interaction in type 1 reactions
as:

∆G0
b(1) = ∆G0

i + ∆G0
p, (1)

where ∆G0
b(1) is the overall standard free energy of formation of the interaction. This free energy

is related in the usual way to the dissociation constant of the reaction by
KD(1) = β/α = c0e

∆G0
b(1)/RT , where c0 is some standard reference concentration (here taken to

be 1 molar). In equation 1, we have decomposed this binding energy into two components,
adopting the notation of Saiz and Vilar [1]. ∆G0

i represents the free energy of formation of the
interface itself and includes contributions from both the desolvation of the two protein interfaces
and the molecular contacts (e.g. electrostatic and Van der Waals interactions) formed upon
binding. ∆G0

p represents the positional entropy loss entailed when taking two proteins that can
freely diffuse around a particular molar volume and confining them to a given binary complex [1].
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Type 2 reactions can be written in a very similar manner to type 1 reactions above. We have:

α

Xk +Xl 
 Xn
γ

In this case, we assume that the forward rate of reaction is again equal to α and we introduce a
third parameter, γ, to represent the dissociation rate for a fully formed ring. Since type 2
reactions constrain the motion of exactly the same number of molecules as type 1 reactions, the
change in positional entropy for both reactions is equivalent [1]. A type 2 reaction, however,
involves the formation of 2 interfaces, rather than just one (see Fig. 1C in the main text). If we
consider a case where all of the interactions along the ring have identical thermodynamic
properties, we have:

∆G0
b(2) = 2∆G0

i + ∆G0
p

= 2∆G0
b(1)−∆G0

p (2)

where the second equation relates the energetics of type 2 reactions to the energetics of type 1
reactions. Since the association rate α is taken to be equivalent for both cases here, equation 2
indicates that the reverse rate of a type 2 reaction (γ) will differ significantly from β. Defining
Kγ ≡ γ/α as the dissociation constant for reactions of type 2, we have:

γ = α · c0 · e(2∆G0
b(1)−∆G0

p)/RT

=

(
α

c0

)
KD(1)2 · e−∆G0

p/RT . (3)

If all of the individual reactions of type 1 are favorable for a given ring (i.e. KD < 1 M for all
reactions of type 1)—and since ∆G0

p > 0 by definition—we will have γ � β. Thus, for the types
of rings discussed in this work, the rate of dissociation for the full ring is generally many orders of
magnitude smaller than the rate of dissociation for any of the acyclic intermediates.

We can define similar equations for cases in which the interactions in a ring do not have the same
strengths (e.g. the heteromeric cases described in section 2.2 below). In our notation, each
interaction in such a context has a unique label (see section 2.2.1); we define the type 1 affinity of
any given interaction “i” as KD(i) ≡ βi

α , where βi denotes the off rate for interaction i. Hence in
any type 2 reaction in which interactions “i” and “j” are formed, we have:

γi,j =

(
α

c0

)
KD(i) ·KD(j) · e−∆G0

p/RT . (4)

In our analysis of ring assembly we treat the affinities of the interactions along the ring as our
principal variable and examine how changes in affinities influence assembly efficiency. As
indicated above, we treat α as a constant—that is, variations in the dissociation constant (either
between configurations or across the interactions in a given ring) are taken to represent changes
in β and γ (see Figure 1 for an example of this thermodynamic picture for two different dimers
forming along a ring). Changing the value of α represents an alternative method of modulating
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the affinity. Interestingly, changes in α can be mirrored by changes in concentration (assuming
that all reactions still have the same on rate). This is perhaps easiest to see by considering the
stochastic version of the deterministic association rate. If we define this stochastic rate as “a”, we
have that α = a ·NA · V where NA is Avogadro’s number and V is the volume of the system [2].
In this construction, we note that any change to α can be conceptualized as either a change in the
fundamental frequency of collisions (a) while keeping concentration constant, or as a change in
the volume of the system (while keeping total particle numbers constant). The latter scenario
corresponds to a change in concentration. Thus, changing KD by varying α is equivalent to
changing concentration scales while keeping α constant. The effect of concentration on assembly
dynamics can be seen in section 4.1.1, Figure 5.

A + B

C + D  

CD

AB

C    D

A    B

∆G

Reaction Coordinate

Figure 1: Schematic free energy landscape for a case in which differences in affinities are entirely represented
by differences in off rates. Here we have two different binding reactions: A binds B and C binds D. “A
+ B” and “C + D” represent the unbound states on the far left of the schematic reaction coordinate; the
unbound states in this case have roughly the same free energy. The transition states (represented by “A
· · · B” and “C · · · D”) also have approximately the same free energy; the change in free energy from the
unbound state to the transition state is identical in both cases (giving identical values of α). However, the
bound states (“AB” and “CD”) exhibit very different free energies, and the difference in free energy change
between the transition state and the bound state results in a much higher value of β for the C-D binding
reaction compared to the A-B binding reaction.

In this work we take a “ballpark” value for the association rate of proteins as α ≈ 106 M−1 s−1 [3].

Since we take α to be constant, for any given value of KD, if we know ∆G0
p, we can calculate both

β and γ for any particular temperature T . Here we focus on T = 300 K, so RT ≈ 0.6 kcal mol−1.
Estimates of ∆G0

p vary in the literature [1], but here we set ∆G0
p = 9 kcal mol−1 [4], which is

taken to be a constant for all reactions. Changing the value of ∆G0
p will essentially modulate the

stability of rings compared to acyclic intermediates, although even considerably smaller values
(say, 6 kcal mol−1) still result in γ � β for the parameter values we consider here (see equation
3). We leave investigation of the effects of modulating the positional entropy term to future work.
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2 Mathematical model of ring assembly

2.1 Assembly of homomeric ring complexes

2.1.1 Notation

We first consider a homomeric ring structure consisting of n identical subunits, any of which can
bind to any other. The subunits are treated as identical but have a “sidedness,” that is, each
subunit has two distinct interfaces, a left and a right; the left side of one can bind to the right
side of another, while two left sides and two right sides cannot bind each other.

As in section 1, we adopt the notation that Xj denotes the sub-complex containing j subunits,
with 1 ≤ j ≤ n. In the discussion that follows, we also use Xj to refer to the concentration of the
complex with j subunits—the meaning of “Xj” in any given case will be clear from the context.
In the differential equations that follow, X1 thus denotes the concentration of monomers, X2

denotes the concentration of dimers, and so on, with Xn denoting the concentration of the full
ring structure.

As discussed in section 1, we denote the on rate as α, the off rate as β, and the ring breakage rate
(the off rate for type 2 reactions) as γ.

2.1.2 Structure, symmetries, and rate constants

A model of assembly must necessarily take into account essential structural aspects of the
molecular species that are generated in the process. This has consequences for how we write our
rate equations.

The kinetic description of a reaction splits into a time-dependent monomial of concentrations
representing mass-action and a time-independent term, the rate constant, representing a reaction
mechanism. Models of assembly, like ours, aim at studying the consequences of mechanisms and
are therefore defined in terms of thermodynamically motivated rate constants that pertain to
elementary interactions (see section 1). This requires that we account explicitly for combinatorial
factors intrinsic to a reaction mechanism rather than absorbing them into an overall rate constant.

To illustrate the issue, consider the dimerization of a monomer. The formation of an asymmetric
dimer will occur at twice the rate than the formation of a symmetric dimer. Yet, this distinction
cannot be expressed in a notation that is too terse in structural detail, such as A+A −→ A2.
The situation clarifies instantly when making a minimum of structure explicit. For example,
consider identical monomers, each with two distinct binding sites, black and white. The
asymmetric case might be represented as e u + e u−→ e ue u and the symmetric case ase u + e u−→ e uu e. The difference in the respective reaction rates is accounted for by
noting that the mechanism producing the asymmetric dimer allows for two “reaction paths”, each
involving a distinct black/white combination, while the mechanism producing the symmetric
dimer admits only one reaction path (since the “white” sites in the symmetric case cannot bind
one another). If we wish to ascribe the same fundamental reaction rate constant to any given
“site–site” interaction for both cases, the “apparent” rate constant for the asymmetric reaction
will be twice that of the symmetric reaction. By representing molecular structure that is relevant
to the problem at hand, we can thus reason about combinatorial factors intrinsic to a mechanism.
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Since combinatorial factors apply per reaction event, we must also account for factors that arise
from the distinguishability of reactants. Say we have a system of reactions: A+A −→ A2 and
A+A2 −→ A3. In the first case, the reactants are indistinguishable from one another, while in
the latter case the reactants are distinguishable. If we wish to have the same per-site rate
constant for these reactions (as in section 1) then we must consider the number of distinct
instances of each reaction. For A binding to A2, we will have N(A) ·N(A2) such instances, where
N(A) is the number of A molecules in the system; for A binding to itself, we will have
N(A)(N(A)− 1)/2 distinct reaction instances. In the second case, passing to the limit of
continuous concentrations [A], we can neglect the linear term, but must preserve the factor 1/2.
Taking explicitly into account the combinatorial factors arising from both mechanism and
reactant indistinguishability permits the formulation of rate equations in terms of rate constants
that are taken to be the same across reactions. In our example, the asymmetric reaction has rate
v = α · 2 · [A]2/2 = α · [A]2, while the symmetric case has half that rate: v = α · [A]2/2; in both
cases d[A]/dt = −2v and d[A2]/dt = v due to the fact that the reaction “consumes” two molecules
of A but produces only one molecule of A2.

An analogous situation arises with the assembly of homomeric rings when two intermediates of
equal length k react with one another. The asymmetric case occurs when the combined length 2k
of the product is less than the length n of the ring (Figure 2A). The symmetric case occurs when
k = n/2 and is due to the simultaneous formation of two interactions upon ring closure (Figure
2B), as argued in section 1.

+

+

A

B

Figure 2: Structured reactions provide a rationale for explicit combinatorial factors needed for rate equations
employing thermodynamic rate constants. The figure illustrates the asymmetric and symmetric dimerization
reactions that arise in homomeric ring assembly. The grey boxes represent identical chains of equal length
k > 1. Asymmetric dimer formation (A) arises when chains of equal length combine to form a chain twice
as long but shorter than the full ring. Symmetric dimerization (B) arises only for rings of even length
and corresponds to identical chains, each half the ring size, simultaneously forming two interactions and
completing the ring, as detailed in section 1. As discussed in the text, the reaction velocity of the asymmetric
case is twice the velocity of the symmetric case.

For the sake of less cluttered equations, we will not name molecular species in a manner that fully
describes their relevant structure, but use a “shorthand” notation instead as described in section
2.1.1. The drawback of such a notation is that one can forget the implications that structural
details can have for determining reaction rates. It is therefore useful to enumerate the various
reaction classes and their distinct kinetic contribution to homomeric ring assembly. We essentially
have bimolecular association reactions in which intermediates form other intermediates or the full
ring, and unimolecular dissociation reactions in which molecules break apart to form smaller
intermediates. We denote the kinetic term that a reaction class contributes to species Xk with Dk.
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1. The bimolecular association reaction Xk +Xl → Xj, with j < n. Since every chain
Xk has two “sides,” there are two paths for this reaction to proceed: Xl binds on the right
of Xk and Xl binds on the left of Xk. Both paths occur with rate α, yielding a reaction rate
v = 2 · α ·Xk ·Xl with Dk = Dl = −v and Dj = v.

2. The bimolecular association reaction 2 Xk → Xj, with j < n. This represents two
copies of a molecule of length k binding to form an intermediate of length j = 2 · k. Since
one of the Xk’s can bind on either side of the other (Figure 2A), the rate of reaction is
v = 2 · α ·X2

k/2 = α ·X2
k with Dk = −2v and Dj = v.

3. The bimolecular association reaction Xk +Xl → Xn. In this case, there is only one
reaction path for Xl to bind to Xk: if the right side of Xk binds to the left side of Xl, then
the left side of Xk must simultaneously bind the right side of Xl in order to form the full
ring (see Figure 1C in the main text). The rate for this reaction is v = α ·Xk ·Xl, with
Dk = Dl = −v and Dn = v.

4. The bimolecular association reaction 2 Xk → Xn. This represents two copies of a
molecule of length k = n/2 binding to one another to form the full ring (Figure 2B); this
reaction only applies to rings of even length. As discussed above, the rate of this reaction is
v = α ·X2

k/2 with Dk = −2v and Dn = v.

5. The dissociation reaction Xj → Xk +Xl with j < n. This represents the dissociation of
a chain Xj into two distinct smaller chains Xk and Xl. The dissociation rate of any single
interaction is denoted β, but in this case there are always two interactions in Xj that could
break in order to give Xk and Xl; in other words, Xk can break off from either the right or
left end of Xj . The rate of the reaction is thus v = 2 ·β ·Xj with Dj = −v and Dk = Dl = v.

6. The dissociation reaction Xj → 2 Xk with j < n. This represents the dissociation of a
chain Xj into two copies of Xk. Of course, j must be even in this case. There is always only
one interaction in Xj that can break in order to form 2 Xk’s (namely, the interaction in the
“middle” of Xj) so the rate for this reaction is just v = β ·Xj with Dj = −v and Dk = 2v.

7. The dissociation reaction Xn → Xk +Xl. This represents the dissociation of the full
ring into two different intermediates of length k and l. As discussed in section 1, any two
interactions in Xn will break with rate γ. Since there are always n ways to choose two
interactions in Xn that will form Xk and Xl when both are broken, the rate of this reaction
is v = n · γ ·Xn with Dn = −v and Dk = Dl = v.

8. The dissociation reaction Xn → 2 Xk. This represents the dissociation of the full ring
into two copies of the intermediate Xk; this reaction obviously only applies to rings of even
length. In this case, there are only n/2 distinct ways of choosing two interactions to break
in order to form two copies of Xk, so the rate of the reaction is v = n/2 · γ ·Xn with
Dn = −v and Dk = 2v.

In the following section, we aggregate over these types of reactions in order to construct a full
system of ODEs describing the deterministic time evolution of the concentrations of all molecular
species.
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2.1.3 Ordinary differential equations

Assembly Intermediates. Assuming mass-action kinetics as described in section 2.1.2 above, the
ordinary differential equations describing the change in concentration of any ring-assembly
intermediate Xj , 1 ≤ j < n, can be written as follows:

dXj

dt
= M

(1)
j +M

(2)
j +M

(3)
j +M

(4)
j +M

(5)
j +M

(6)
j 1 ≤ j < n, (5)

where the M
(i)
j represent groups of terms describing the exchange of mass between intermediates

resulting from six specific binding and unbinding processes. The processes are:

1. An increase in Xj resulting from the dissociation of higher-order intermediates containing
Xj as a sub-complex (positive terms):

M
(1)
j = 2 · β

n−1∑
l=j+1

Xl.

Note that this term covers both reactions in which only one molecule of Xj is produced
(class 5 reactions in section 2.1.2) and reactions where 2 molecules of Xj are produced (class
6 reactions in section 2.1.2).

2. An increase resulting from smaller intermediates binding together to form Xj (positive
terms):

M
(2)
j = α

j−1∑
l=1

Xl ·Xj−l.

Note that the sum in the above term will count asymmetric pairs of intermediates twice,
but will count symmetric pairs only once. To illustrate this, suppose we have j = 6 (with of

course n > 6). The sum in M
(2)
j will contain the following terms: X1 ·X5, X2 ·X4, X3 ·X3,

X4 ·X2 and X5 ·X1. Every type of interaction occurs twice except for the j/2 case. M
(2)
j

thus correctly represents the difference between class 1 reactions (where the two
intermediates are of different length) and class 2 reactions (where the two intermediates
have the same length), as described in section 2.1.2.

3. A decrease resulting from the binding of Xj to complementary intermediates to form
higher-order complexes, but not the full ring (negative terms):

M
(3)
j = −2 · α ·Xj

n−j−1∑
l=1

Xl. (6)

Note that, unlike M
(2)
j , symmetric and asymmetric cases are considered equally here. This

is due to the fact that both class 1 and class 2 association reactions have the same net effect
on the concentration of the reactants (see section 2.1.2).
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4. A decrease resulting from the breakage of one of the j − 1 interactions within the complex
Xj (negative term):

M
(4)
j = −β ·Xj · (j − 1).

This term covers both class 5 and class 6 dissociation reactions (see section 2.1.2).

5. A decrease resulting from the binding of Xj to its complementary intermediate to form the
full ring (negative term):

M
(5)
j = −α ·Xj ·Xn−j .

Note that when Xj interacts with its complement Xn−j to form the full ring Xn, two new
interactions are formed simultaneously (see section 1 and Fig. 1C in the main text). This
term covers both class 3 and class 4 association reactions in section 2.1.2, since both have
the same net effect on the reactants.

6. An increase resulting from the breakage of the full ring to yield an intermediate of length j
(positive term). The rate γ represents the breakage of two interactions in the full ring to
yield the smaller intermediate (see section 1):

M
(6)
j = n · γ ·Xn.

This term covers both class 7 and class 8 dissociation reactions, since both cases have the
same net effect on the products (see section 2.1.2).

Full Ring. The dynamics of the concentration of the full ring (Xn) can be described in terms of
two processes: the binding of complementary intermediates to form the ring, and the dissociation

of the ring due to the simultaneous breaking of two interactions. These terms are denoted M
(1)
n

and M
(2)
n , respectively:

dXn

dt
= M (1)

n +M (2)
n . (7)

1. The first term, M
(1)
n , models the process of the binding of complementary intermediates to

form the ring, and hence consists of positive terms:

M (1)
n = α

bn
2
c∑

l=1

(
1

1 + δj,n/2

)
Xl ·Xn−l,

where the floor function bxc returns the largest integer smaller than x and arises to ensure
correct counting for both odd and even rings. The δj,n/2 term is the standard Kronecker
delta and is included to represent the difference between type 3 and type 4 association
reactions (see section 2.1.2): when j 6= n/2, the reaction occurs at rate α ·Xl ·Xn−l, but
when j = n/2 the reaction occurs with rate (α/2) ·X2

n/2.
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2. The second term, M
(2)
n , models the process of the breakage of the ring by dissociation of

two interactions. There are
(
n
2

)
ways of choosing any two of the n interactions in the full

ring to dissociate with rate γ, yielding the following expression:

M (2)
n = −

(
n

2

)
· γ ·Xn.

Note that this covers the net effect of all class 7 and class 8 dissociation reactions described
in section 2.1.2.

2.1.4 Example: homomeric three-ring

The full set of differential equations for the homomeric three-ring can therefore be given as follows:

dX1

dt
= 2βX2 − 2αX2

1 − αX1X2 + 3γX3

dX2

dt
= αX2

1 − βX2 − αX2X1 + 3γX3

dX3

dt
= αX1X2 − 3γX3. (8)

2.2 Assembly of heteromeric rings

2.2.1 Notation

We now consider a ring structure with n distinct subunits, which we label x0, x1, . . . , xn−1—in
this case, the subscripts refer to the identity of the subunit, not the size of a sub-complex as in
the heteromeric case. Because the subunits are distinct, and each subunit can bind only to its
neighbors, the ring is heteromeric (see Fig. 1 in the main text). In our notation, the indices for
the subunits represent the equivalence classes [0], [1], . . . , [n− 1] of the integer modular arithmetic
group Zn, where n is the ring length. That is, counting, addition, and subtraction on these
indices in the discussion below should be understood to occur modulo n. In classifying the various
sub-complexes of the full ring we adopt the convention that we enumerate the subunits in
increasing order, identifying the complex by the index of the subunit from which we begin
counting; so for example, in the case of a ring of length five, the trimer containing the subunits
x4, x0 and x1 can be identified as a molecule containing three subunits starting from subunit x4,
the “first” subunit of the complex. We refer to the subunits that come first in counting order as
occupying the “left” end of the complex, while those that come last in counting order are on the
“right” end: in the trimer described above, subunit x4 is on the left end, while subunit x1 is on
the right end.

Let xi,j denote the ring assembly intermediate starting from subunit i and containing j total
subunits. For example, in the case of a five-membered ring, x2,1 denotes the monomer x2, while
x3,4 denotes the tetramer starting at subunit x3 and including subunits x4, x0, and x1. For any
given sub-complex of size j < n there are n distinct sub-complexes of that size. An issue arises in
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our notation due to the fact that any of the variables xi,n could be used to denote the
concentration of the full ring, since they all refer to the same species. For simplicity, we use the
variable “xn” to denote the full ring, with xn ≡ xi,n ∀ i. Since the individual species in the ring xi
have indices ranging from 0 to n− 1, the variable xn refers unambiguously to the full ring.

As in the homomeric case, we use the variable “xi,j” to represent both the concentration of a
given species and as a label for the species itself; the meaning of any given xi,j will be clear from
the context.

Since the binding interfaces between subunits are distinct and may vary in strength, we can no
longer apply a single off rate β to all dissociation reactions as we did in the homomeric case. We
denote the off rate between two subunits xi and xi+1 as βi; that is, off rates are labeled from the
left side. Similarly, when describing the rate of ring breakage, we can no longer apply a single rate
γ. Since the ring breakage rate is determined by the strength of the interactions at the two points
of breakage, in the heteromeric case we must denote the two interactions that break. As in
equation 4, we use the notation γi,j to denote the rate of ring breakage occurring at two
junctions: between subunits i and i+ 1, and j and j + 1. This rate γi,j is determined by the
strengths of the interactions between these subunits (dissociation constants KD(i) and KD(j)).
See equation 4 in section 1 for a description of how to calculate γi,j from these affinities.

The set of chemical reactions possible with heteromeric rings is similar to those described for
homomeric rings in section 2.1.2. The difference here is that no reaction can ever consume or
produce two copies of the same molecule since no intermediate in this system can ever react with
another copy of itself in a productive way. We can thus ignore class 2, 4, 6 and 8 reactions as
defined in section 2.1.2.

2.2.2 Ordinary differential equations

Assembly Intermediates. In analogy to equation 5 for the homomeric case, the differential
equations describing the change in concentration of an assembly intermediate xi,j have the
following form:

dxi,j
dt

= T
(1)
i,j + T

(2)
i,j + T

(3)
i,j + T

(4)
i,j + T

(5)
i,j + T

(6)
i,j 1 ≤ j < n, 0 ≤ i < n, (9)

where the T
(k)
i,j represent groups of terms describing the exchange of mass between intermediates

resulting from the same six binding and unbinding processes described above for the homomeric
case. In the heteromeric case, these terms have the the following structure:

1. An increase in xi,j resulting from the dissociation of xi,j from either end of higher-order
intermediates, yielding a term consisting of two sums:

T
(1)
i,j = βi+j−1

n−1∑
l=j+1

xi,l + βi−1

n−j−1∑
l=1

xi−l,j+l.

2. An increase resulting from smaller intermediates binding together to form xi,j (positive
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terms):

T
(2)
i,j = α

j−1∑
l=1

xi,l · xi+l,j−l.

3. A decrease resulting from the binding of xi,j to complementary intermediates to form
higher-order complexes (negative terms), but not the full ring. Since binding can occur at
either of the two ends of xi,j , this term consists of two sums:

T
(3)
i,j = −α · xi,j

(
n−j−1∑
l=1

xi+j,l +

n−j−1∑
l=1

xi−l,l

)
.

4. A decrease resulting from the breakage of one of the j − 1 interactions within the complex
xi,j (negative term):

T
(4)
i,j = −xi,j

i+j−2∑
k=i

βk,

where the sum is limited by k = i+ j − 2 since the “final” interaction that can be broken in
the complex occurs between subunits i+ j − 2 and i+ j − 1 and as such is indexed as βi+j−2

in our notation.

5. A decrease resulting from the binding of xi,j to its complementary intermediate to form the
full ring (negative term):

T
(5)
i,j = −α · xi,j · xi+j,n−j .

6. An increase resulting from the breakage of the full ring to yield the intermediate xi,j
(positive term). There is only one pair of interactions that can break to produce the
intermediate xi,j : the interaction joining subunit xi−1 to subunit xi (at the “left” end of
xi,j) and the interaction joining subunit xi+j−1 to subunit xi+j (at the “right” end). This
compound rate is denoted γi−1,i+j−1, yielding the following expression:

T
(6)
j = γi−1,i+j−1 · xn.

Full Ring. As in the homomeric case, there is a single equation for the full ring, and it
incorporates two processes: the binding of complementary intermediates to form the ring, and the

breakage of the ring due to the dissociation of two interactions. These terms are denoted T
(1)
n and

T
(2)
n , respectively:

dxn
dt

= T (1)
n + T (2)

n . (10)

1. The first term, T
(1)
n , models the binding of complementary intermediates to form the ring,
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and hence consists of positive terms:

T (1)
n = α

bn
2
c∑

j=1

(
n−1∑
i=0

(
1

1 + δj,n/2

)
xi,j · xi+j,n−j

)
.

The Kronecker delta (δj,n/2) arises to compensate for the fact that the inner sum above
double-counts the distinct reactions that can occur between intermediates of length n/2.

2. The second term, T
(2)
n , models the process of the breakage of the ring by dissociation of two

interactions. Since dissociation can occur at any two interactions, we must sum over all of
the unique γi,j to get the total rate of ring breakage. Note that because the breakage of the
two interactions is understood to occur simultaneously the order of interaction breakage
does not matter: the rate γi,j is therefore equivalent to γj,i and only one of these
permutations is counted when taking the sum.

T (2)
n = −xn

n−2∑
i=0

 n−1∑
j=i+1

γi,j

 .

2.2.3 Example: heteromeric three-ring

As a specific example, the full set of equations for the change in concentration of xi,j for a
three-membered ring is therefore:

dx0,1

dt
= β0x0,2 + β2x2,2 − αx0,1(x1,1 + x2,1)− αx0,1x1,2 + γ2,0x3

dx1,1

dt
= β1x1,2 + β0x0,2 − αx1,1(x2,1 + x0,1)− αx1,1x2,2 + γ0,1x3

dx2,1

dt
= β2x2,2 + β1x1,2 − αx2,1(x0,1 + x1,1)− αx2,1x0,2 + γ1,2x3

dx0,2

dt
= αx0,1x1,1 − β0x0,2 − αx0,2x2,1 + γ2,1x3

dx1,2

dt
= αx1,1x2,1 − β1x1,2 − αx1,2x0,1 + γ0,2x3

dx2,2

dt
= αx2,1x0,1 − β2x2,2 − αx2,2x1,1 + γ1,0x3

dx3

dt
= α(x0,1x1,2 + x1,1x2,2 + x2,1x0,2) + x3(γ0,1 + γ0,2 + γ1,2).

2.3 Homomeric ring assembly arises as a special case of heteromeric ring assembly

Using the equations shown in Sections 2.1.3 and 2.2.2, we can show that the assembly of
homomeric rings arises as a special case of heteromeric ring assembly where the affinities and
initial subunit concentrations are all equal.
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Assembly Intermediates. We start by considering heteromeric ring assembly. The concentration of
all heteromeric intermediates of length j < n, denoted as X ′j , is simply the sum of the
concentrations of the various xi,j intermediates of that length:

X ′j ≡
n−1∑
i=0

xi,j 1 ≤ j < n.

Consider the case where the initial concentrations of each subunit are equal, and where affinities
between subunits are uniform—that is, βi = β ∀i and thus γi,j = γ ∀(i, j). In this situation, at
time t = 0 terms 1-6 in equation 9 will be equal for any two intermediates of length j < n; that is,
we will have T xi,j = T xk,j for any term x in equation 9 and any pair of species xi,j and xk,j . At
t = 0 we thus have that the differential equations for any individual intermediate of length j will
be equal to the differential equations for all the other intermediates of length j. Since there is no
source of symmetry breaking in this case, the differential equations will remain identical
throughout the time evolution of the system, and so we have xi,j = xk,j at all times. This yields:

X ′j =

n−1∑
k=0

xk,j = n · xi,j 1 ≤ j < n

xi,j =
X ′j
n
, (11)

where we have arbitrarily chosen an xi,j to represent all intermediates of length j since they are
all equal. By the chain rule, the differential equation for the change in concentration of X ′j is the
sum of the equations for all xi,j :

dX ′j
dt

=

n−1∑
k=0

dxk,j
dt

= n · dxi,j
dt

1 ≤ j < n. (12)

As in the homomeric case (equation 5) and heteromeric case (equation 9), the differential

equation
dX′j
dt consists of terms corresponding to the six processes of binding and unbinding:

dX ′j
dt

= S
(1)
j + S

(2)
j + S

(3)
j + S

(4)
j + S

(5)
j + S

(6)
j .

We start from the heteromeric equations defining the terms of
dxi,j
dt , denoting the heteromeric on

rate as αt to distinguish it from the homomeric on rate, denoted αm. Using the relations given by

equations 11 and 12, we can write the equations for
dX′j
dt as follows:

1. We can write S
(1)
j by starting with the heteromeric term T

(1)
i,j , substituting

X′j
n for any xi,j

(by equation 11), substituting β for any βi, and multiplying by the factor n (by equation
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12), to get :

S
(1)
j = n · β

 n−1∑
l=j+1

X ′l
n

+

n−j−1∑
l=1

X ′j+l
n


= β

 n−1∑
l=j+1

X ′l +

n−j−1∑
l=1

X ′j+l


= β

((
X ′j+1 +X ′j+2 + . . .+X ′n−1

)
+
(
X ′j+1 +X ′j+2 + . . .+X ′n−1

))
.

As the final line above demonstrates, the two summations in the expression sum over the
same set of terms and hence can be replaced by a single sum multiplied by a factor of two.

We thus find that S
(1)
j is equivalent to the term M

(1)
j :

S
(1)
j = 2 · β

n−1∑
l=j+1

X ′l = M
(1)
j .

2. We repeat the above procedure, starting with the terms in T
(2)
i,j for the heteromeric case and

substituting
X′j
n for any xi,j and multiplying by the factor n:

S
(2)
j = n · αt

j−1∑
l=1

X ′l
n
·
X ′j−l
n

=
αt
n

j−1∑
l=1

X ′l ·X ′j−l.

Note that, if we introduce the relationship αm = αt
n , this yields:

S
(2)
j = αm

j−1∑
l=1

X ′l ·X ′j−l = M
(2)
j .

We thus have that the heteromeric term S
(2)
j = M

(2)
j when we set the homomeric association

rate αm to equal the heteromeric association rate αt, divided by the ring length n.
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3. We calculate S
(3)
j from T

(3)
i,j :

S
(3)
j = −n · αt ·

X ′j
n

(
n−j−1∑
l=1

X ′l
n

+

n−j−1∑
l=1

X ′l
n

)

= −2 · αt
n
·X ′j

n−j−1∑
l=1

X ′l

= −2 · αm ·X ′j
n−j−1∑
l=1

X ′l = M
(3)
j ,

where we have again used the substitution αm = αt
n .

4. To calculate S
(4)
j , we begin with T

(4)
i,j , choosing i = 0 for simplicity in the following sums:

S
(4)
j = −n ·

X ′j
n

j−2∑
k=0

βk

= −X ′j · (β0 + β1 + . . .+ βj−2).

Since all βi = β, and since there are j − 1 terms in the sum, we can substitute to yield an
expression identical to the homomeric equation:

S
(4)
j = −β ·X ′j · (j − 1) = M

(4)
j .

5. We repeat the procedure starting with T
(5)
i,j , again noting the transformation αm = αt

n :

S
(5)
j = −n · αt ·

X ′j
n
·
X ′n−j
n

= −αm ·X ′j ·X ′n−j = M
(5)
j .

6. We repeat the procedure for T
(6)
i,j , which describes the process of ring breakage. We denote

the concentration of the full heteromeric ring in terms of the combined heteromeric
intermediates X ′j as X ′n. Since in the heteromeric case there is only instance of the full ring
xn, X ′n = xn. Due to the assumed uniformity of affinities, γi,j = γ:

S
(6)
j = n · γ · xn = M

(6)
j .

Full Ring. To determine the equation for the full heteromeric ring X ′n in terms of the combined
heteromeric intermediates X ′j , we start with the equation for the full heteromeric ring as given in
equation 10 and make the appropriate substitutions. As in the heteromeric and homomeric cases,
the equation consists of two terms describing the processes of ring formation and ring breakage:

dX ′n
dt

= S(1)
n + S(2)

n .
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1. We start with the first term, S
(1)
n , describing the process of ring formation. As in the

derivation for the assembly intermediates, we substitute
X′j
n for any xi,j ; in this case,

however, we do not multiply the entire term by n, since X ′n = xn in contrast to the
assembly intermediates, where X ′i,j = n · xi,j .

S(1)
n = αt

bn
2
c∑

j=1

(
n−1∑
i=0

(
1

1 + δj,n/2

)
X ′j
n
·
X ′n−j
n

)
.

We note that the terms in the inner sum do not depend on i, and thus this sum represents
multiplication by a factor of n. Remembering αm = αt

n , we have:

S(1)
n = n · αt

bn
2
c∑

j=1

(
1

1 + δj,n/2

)
X ′j
n
·
X ′n−j
n

= αm

bn
2
c∑

j=1

(
1

1 + δj,n/2

)
X ′j ·X ′n−j = M (1)

n .

2. We repeat the procedure for the second term, S
(2)
n :

S(2)
n = −X ′n

n−2∑
i=0

 n−1∑
j=i+1

γi,j


= −X ′n

n−2∑
i=0

(γi,i+1 + γi,i+2 + . . .+ γi,n−1) .

There are n− 1− i terms in the inner sum, and since γi,j = γ due to interaction uniformity,
this yields:

S(2)
n = −X ′n

n−2∑
i=0

γ(n− 1− i)

= −γ ·X ′n ((n− 1) + (n− 2) + . . .+ (n− 1− (n− 3)) + (n− 1− (n− 2)))

= −γ ·X ′n ((n− 1) + (n− 2) + . . .+ 2 + 1))

= −γ ·X ′n
n−1∑
k=1

k.

We can rewrite this summation,
∑n−1

k=1 k, in terms of the well-known sum of the first n
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natural numbers:
∑n−1

k=1 k = (
∑n

k=1 k)− n = n(n+ 1)/2− n. This yields:

S(2)
n = −

(
n2 + n− 2n

2

)
· γ ·X ′n

= −n(n− 1)

2
· γ ·X ′n

= −
(
n

2

)
· γ ·X ′n = M (2)

n .

Summary. As described above, we can show that every S
(x)
j is equivalent to the corresponding

M
(x)
j term. This indicates that we can describe the time evolution of the size-class variables X ′j in

the heteromeric case with the same exact equations governing the dynamics of the homomeric Xj

concentrations. The assembly dynamics of any given heteromeric ring in which the following
conditions hold:

1. The off rates βi and thus the ring breakage rates γi,j are equal for all subunits in the
heteromeric case

2. For any given length j, the initial concentrations of the complexes xi,j are equal for all i

can thus be represented by a homomeric system with on rate αm = αt
n . The rescaling of the

association rate arises naturally in this case: given some k + l ≤ n, a given homomeric Xk

molecule can react with any Xl molecule. Any heteromeric xi,k molecule, however, can only react
with one of the n members of X ′l . Homomeric molecules thus have n more binding options than
heteromeric ones, and dividing the association rate by n compensates for this fact.

2.4 Modeling synthesis and degradation of rings

The models described in sections 2.1.3 and 2.2.2 are meant to capture the dynamics of ring
assembly when a closed pool of monomers is allowed to spontaneously assemble. This situation
mimics the conditions of many in vitro assembly experiments (e.g., [5]), or cases in which
assembly is characterized by rapid activation of monomers (e.g. the apoptosome [6]). As discussed
in the main text, however, most cells do not synthesize a large number of monomers and only
then allow them to interact—assembly in the majority of cases is likely to be characterized by a
steady-state process in which the cell constantly produces new monomers to compensate for
continuous decreases in the concentration of both assembly intermediates and the full ring due to
cell growth or active protein degradation.

We must thus understand whether the dynamic deadlock we have identified (i.e. the plateau in
Fig. 2A in the main text) has any bearing on the assembly of rings in the presence of synthesis
and degradation. These two processes could each have a role in facilitating assembly: the
degradation of persisting intermediates alters or removes the incompatible complexes responsible
for deadlock, while the synthesis of new monomers allows any persisting intermediates to find
compatible binding partners and complete the process of assembly.
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To explore how subunit synthesis and degradation of complexes would affect ring assembly
dynamics, we designed additional models incorporating these two processes. Existing
experimental evidence suggests that many distinct “degradation” scenarios are possible,
depending on the particular cell type in question. We consider two specific cases.

In the first model, which we denote “subunit deletion” or simply “model A,” we assume that each
individual subunit has a certain likelihood of being degraded, irrespective of its membership in a
protein complex. When a subunit is deleted from a complex, the other subunits are left intact. In
the context of a system in which proteins are post-translationally tagged and targeted for
degradation by proteases, this implies that (1) the probability of a protein being tagged is
insensitive to binding context, and (2) the degradation machinery is capable of removing
individual subunits from complexes. Experimental work on the bacterial protease ClpXP suggests
that it can extract and degrade a tagged subunit from a complex in precisely this fashion, leaving
other bound (but untagged) subunits intact [7]; this capability of ClpXP has also been exploited
for use experimentally as “molecular tweezers” [8].

In the second model, denoted “whole-complex degradation” or “model B,” we instead assume that
each complex has a certain likelihood of being degraded—this includes both monomers and fully
assembled rings. The simplest physical interpretation of this model is one of continuous dilution:
for example, if the cell grows continuously in volume, the concentrations of all complexes,
monomers and rings alike, will be reduced. In the context of active protein degradation processes
this model assumes that (1) the propensity for degradation is a property of complexes rather than
subunits, and hence that all complexes have an equal likelihood of being tagged regardless of size,
and (2) that the degradation machinery consumes the entire complex in one interaction. In
contrast to ClpXP, the bacterial protease ClpAP appears to use this alternative mechanism,
degrading whole heterodimeric complexes even in cases where only subunit has been tagged [7].

As described above, there is some experimental evidence for the degradation processes described
in model A and model B. These two models, however, should not be considered comprehensive,
nor mutually exclusive—the dynamics of degradation processes in cells are likely to depend on
complex size, specific subunit affinity for targeting enzymes, the number and type of degradative
post-translational modifications, and many other factors in a highly complex manner. In this
work we consider these two cases separately for the sake of simplicity; we leave exploration of the
effects of more complicated degradation processes to future work.

In the following sections we describe the ordinary differential equations used to model homomeric
and heteromeric ring assembly in the presence of model A- or model B-type degradation. In both
cases, production of monomers occurs at a rate Q that is considered to be constant in time, and
all first-order degradation processes occur with a rate δ.

2.4.1 Homomeric model A: subunit deletion

Assembly Intermediates with Lengths between 2 and n - 1. As shown in equation 5, the ordinary
differential equations for the change in concentration of any homomeric ring-assembly

intermediate Xj , 1 ≤ j < n can be written as the sum of six groups of terms, M
(1)
j + . . .+M

(6)
j ,

describing six specific binding and unbinding processes. To incorporate subunit deletion into our
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equations describing the concentrations of assembly intermediates we add additional terms to
each

dXj
dt . For intermediates of length 2 ≤ j < n− 1 (we deal with monomers in a separate section

below), these terms take the form:

dXj

dt
= M

(1)
j + . . .+M

(6)
j +M

(A1)
j +M

(A2)
j . 2 ≤ j < n− 1 (13)

The physical processes modeled by these two additional terms are as follows:

1. A decrease in Xj resulting from deletion of a monomer from the complex (negative term).
In model A, each monomer has the same independent chance of being degraded; since there
are j monomers in Xj , the deletion rate δ is multiplied by j:

M
(A1)
j = −j · δ ·Xj . (14)

2. An increase in Xj resulting from deletion of a monomer from a larger intermediate Xk of
size j < k < n, yielding Xj (positive terms). Because there are exactly two monomers that
can be deleted from Xk to yield a smaller intermediate of length j, the degradation rate δ is
multiplied by two:

M
(A2)
j = 2 · δ ·

n−1∑
k=j+1

Xk.

Monomers. The equation for monomers X1 is identical to equation 13 for intermediates smaller
than length n− 1, with the addition of a single additional term, Q, denoting the rate of synthesis
of new monomers:

dX1

dt
= M

(1)
1 + . . .+M

(6)
1 +M

(A1)
1 +M

(A2)
1 +Q.

Assembly Intermediates of Length n - 1. The equation for assembly intermediates Xn−1 is similar
to the equations for smaller intermediates; however, since the only larger intermediate (from
which a monomer can be deleted to yield Xn−1) is the full ring Xn, the equation has the following
structure:

dXn−1

dt
= M

(1)
n−1 + . . .+M

(6)
n−1 +M

(A1)
n−1 +M

(A3)
n−1 .

In this expression M
(A1)
n−1 is as in equation 14 with j = n− 1, and M

(A3)
n−1 is as follows:

M
(A3)
n−1 = n · δ ·Xn.

The factor n is applied to the rate δ due to the fact that there are n subunits that can be deleted
from the full ring Xn to yield the intermediate Xn−1.

Full Ring. The formation of the full ring Xn with the addition of degradation includes the two
processes described for equation 7, with the addition of a term to describe the degradation of the

24

193



full ring:

dXn

dt
= M (1)

n +M (2)
n +M (A4)

n .

Because there are n subunits that can be deleted from the full ring, each with rate δ, the term

M
(A4)
n has the following form:

M (A4)
n = −n · δ ·Xn.

Example: Homomeric Three-Ring. The full set of differential equations for the homomeric
three-ring with subunit deletion is as follows:

dX1

dt
= 2βX2 − 2αX2

1 − αX1X2 + 3γX3 − δX1 + 2δX2 +Q

dX2

dt
= αX2

1 − βX2 − αX2X1 + 3γX3 − 2δX2 + 3δX3

dX3

dt
= αX1X2 − 3γX3 − 3δX3. (15)

2.4.2 Heteromeric model A: subunit deletion

We now consider the case of heteromeric ring assembly with model A degradation, where
individual subunits can be deleted individually from assembled complexes. Each subunit xi may
have a different rate of deletion, denoted δi; the synthesis rate of monomer xi is denoted Qi.
Though we describe here the form of the equations allowing for differences between the different
δi and Qi, in our simulations we considered only the case where the synthesis and degradation
rates of all subunits are equal, that is δi = δ and Qi = Q.

Assembly Intermediates with Lengths between 2 and n - 1. As shown in equation 9, the ordinary
differential equations for the change in concentration of any heteromeric ring-assembly
intermediate xi,j , 1 ≤ j < n, 0 ≤ i < n can be written as the sum of six groups of terms,

T
(1)
i,j + . . .+ T

(6)
i,j , describing six specific binding and unbinding processes. As in the case of

homomeric rings, to incorporate subunit deletion into our equations describing the concentrations
of assembly intermediates we add additional terms to each

dxi,j
dt . For intermediates of length

2 ≤ j < n− 1 (as for the homomeric case we deal with monomers in a separate section below),
these terms take the form:

dxi,j
dt

= T
(1)
i,j + . . .+ T

(6)
i,j + T

(A1)
i,j + T

(A2)
i,j 2 ≤ j < n− 1, 0 ≤ i < n. (16)

The physical processes modeled by these two additional terms are as follows:

1. A decrease in xi,j resulting from deletion of a monomer from the complex (negative terms).
Since any of the subunits within xi,j can be deleted, we sum over the deletion rates for all j
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members of xi,j :

T
(A1)
i,j = −xi,j

j−1∑
k=0

δi+k. (17)

2. An increase in xi,j resulting from deletion of a monomer from a larger intermediate of size
j < k < n, yielding xi,j (positive terms). For deletion of a single subunit to result in the
production of xi,j , xi,j must be on one of the two “ends” of the larger complex. In the
complexes where xi,j is on the “left end” (using the notation described in section 2.2.1), xi,j
will be produced when the subunit that links xi,j to the complex is deleted; this is subunit
xi+j . In complexes where xi.j is on the “right end”, subunit xi−1 must be deleted in order
to obtain xi,j . We thus obtain:

T
(A2)
i,j = δi+j

n−1∑
k=j+1

xi,k + δi−1

n−1∑
k=j+1

xi+j−k,k,

where the first sum considers all the left cases, and the second all the right cases.

Monomers. The equation for monomers xi,1 is identical to equation 16 for intermediates smaller
than length n− 1, with the addition of a single additional term, Qi, denoting the rate of synthesis
of monomer i:

dxi,1
dt

= T
(1)
i,1 + . . .+ T

(6)
i,1 + T

(A1)
i,1 + T

(A2)
i,1 +Qi.

Assembly Intermediates of Length n - 1. The equation for assembly intermediates xi,n−1 is similar
to the equations for smaller intermediates; however, since the only larger intermediate from which
a monomer can be deleted to yield xi,n−1 is the full ring xn, we have:

dxi,n−1

dt
= T

(1)
i,n−1 + . . .+ T

(6)
i,n−1 + T

(A1)
i,n−1 + T

(A3)
i,n−1.

In this expression T
(A1)
i,n−1 is as in equation 17 with j = n− 1. T

(A3)
i,n−1 describes the rate of formation

of xi,n−1 by deletion of a subunit from the full ring; since the only monomer that can be deleted

from the full ring to result in xi,n−1 is the monomer xi−1, T
(A3)
i,n−1 is written:

T
(A3)
i,n−1 = δi−1 · xn.

Full Ring. The equation for formation of the full ring xn includes the two assembly processes
described in equation 10, with the addition of a term to describe the degradation of the full ring:

dxn
dt

= T (1)
n + T (2)

n + T (A4)
n .
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Since any of the subunits xi can be deleted from the full ring, each with its own rate δi, the term
has the following form:

T (A4)
n = −xn

n−1∑
i=0

δi.

Example: Heteromeric Three-Ring. The full set of differential equations for the heteromeric
three-ring with subunit deletion is as follows:

dx0,1

dt
= β0x0,2 + β2x2,2 − αx0,1(x1,1 + x2,1)− αx0,1x1,2 + γ2,0x3

−δ0x0,1 + δ1x0,2 + δ2x2,2 +Q0

dx1,1

dt
= β1x1,2 + β0x0,2 − αx1,1(x2,1 + x0,1)− αx1,1x2,2 + γ0,1x3

−δ1x1,1 + δ2x1,2 + δ0x0,2 +Q1

dx2,1

dt
= β2x2,2 + β1x1,2 − αx2,1(x0,1 + x1,1)− αx2,1x0,2 + γ1,2x3

−δ2x2,1 + δ0x2,2 + δ1x1,2 +Q2

dx0,2

dt
= αx0,1x1,1 − β0x0,2 − αx0,2x2,1 + γ2,1x3

−x0,2(δ0 + δ1) + δ2x3

dx1,2

dt
= αx1,1x2,1 − β1x1,2 − αx1,2x0,1 + γ0,2x3

−x1,2(δ1 + δ2) + δ0x3

dx2,2

dt
= αx2,1x0,1 − β2x2,2 − αx2,2x1,1 + γ1,0x3

−x2,2(δ2 + δ0) + δ1x3

dx3

dt
= α(x0,1x1,2 + x1,1x2,2 + x2,1x0,2) + x3(γ0,1 + γ0,2 + γ1,2)

−x3(δ0 + δ1 + δ2).

2.4.3 Homomeric model B: whole-complex degradation

Assembly Intermediates. As shown in equation 5, the ordinary differential equations for the change
in concentration of any ring-assembly intermediate Xj , 1 ≤ j < n can be written as the sum of six

groups of terms, M
(1)
j + . . .+M

(6)
j , describing six specific binding and unbinding processes. To

incorporate whole-complex degradation into our equations describing the concentrations of

assembly intermediates we add an additional term, M
(B1)
j , to each

dXj
dt . The resulting equation

for intermediates of length 2 ≤ j < n (monomers are dealt with in a separate section below) is as
follows:

dXj

dt
= M

(1)
j + . . .+M

(6)
j +M

(B1)
j 2 ≤ j < n.
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Since in this model of degradation all complexes have an equal rate δ of being degraded, the

degradation term M
(B1)
j is simply:

M
(B1)
j = −δ ·Xj 1 ≤ j ≤ n. (18)

Monomers. In our equation for monomers X1, the degradation term M
(B1)
1 is as described above

in equation 18, but we also account for the synthesis of new monomers by incorporating the
synthesis rate Q:

dX1

dt
= M

(1)
1 + . . .+M

(6)
1 +M

(B1)
1 +Q.

Full Ring. The equation for the formation of the full ring Xn consists of the same two terms as

described for equation 7, with the addition of the degradation term M
(B1)
n :

dXn

dt
= M (1)

n +M (2)
n +M (B1)

n . (19)

M
(B1)
n takes the same form as equation 18:

M (B1)
n = −δ ·Xn.

Example: Homomeric Three-Ring. The full set of differential equations for the homomeric
three-ring with whole-complex degradation is as follows:

dX1

dt
= 2βX2 − 2αX2

1 − αX1X2 + 3γX3 − δX1 +Q

dX2

dt
= αX2

1 − βX2 − αX2X1 + 3γX3 − δX2

dX3

dt
= αX1X2 − 3γX3 − δX3. (20)

2.4.4 Heteromeric model B: whole-complex degradation

Because the whole-complex degradation model applies the same degradation rate to all
complexes, the differential equations for heteromeric ring assembly incorporating this degradation
model require nearly identical modifications as those for homomeric ring assembly, described in
section 2.4.3. Note that in this case while there is a single degradation rate δ that applies to all
complexes, but we allow for different rates of monomer synthesis—the synthesis rate for monomer
xi is denoted Qi. As in the case of the subunit deletion model for heteromeric rings (section 2.4.2).
in our simulations we only consider the case where these rates are all equal (i.e. Qi = Q ∀i).

Assembly intermediates. As shown in equation 9, the ordinary differential equations for the change
in concentration of any heteromeric ring-assembly intermediate xi,j , 1 ≤ j < n, 0 ≤ i < n can be

written as the sum of six groups of terms, T
(1)
i,j + . . .+ T

(6)
i,j , describing six specific binding and
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unbinding processes. As in the case of homomeric rings, to incorporate whole-complex
degradation into our equations describing the concentrations of assembly intermediates we add a

single additional term T
(B1)
i,j to each

dxi,j
dt . The resulting equation for intermediates of length

2 ≤ j < n (we deal with monomers in a separate section below), is as follows:

dxi,j
dt

= T
(1)
i,j + . . .+ T

(6)
i,j + T

(B1)
i,j 2 ≤ j < n, 0 ≤ i < n. (21)

Since in this model of degradation all complexes have an equal rate δ of being degraded, the

degradation term T
(B1)
i,j is simply

T
(B1)
i,j = −δ · xi,j 1 ≤ j ≤ n. (22)

Monomers. In our equation for monomers xi,1, the degradation term T
(B1)
i,1 is as described above

in equation 22, but we also account for the synthesis of new monomers by incorporating the
synthesis rate Qi:

dxi,j
dt

= T
(1)
i,1 + . . .+ T

(6)
i,1 + T

(B1)
i,1 +Qi.

Full Ring. The formation of the full ring xn with the addition of whole-complex degradation

includes the two processes described for equation 10, with the addition of the term T
(B1)
n :

dxn
dt

= T (1)
n + T (2)

n + T (B1)
n .

Here T
(B1)
n is as described in equation 22:

T (B1)
n = −δ · xn.
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Example: Heteromeric Three-Ring. The full set of differential equations for the heteromeric
three-ring with whole-complex degradation is as follows:

dx0,1

dt
= β0x0,2 + β2x2,2 − αx0,1(x1,1 + x2,1)− αx0,1x1,2 + γ2,0x3

−δx0,1 +Q0

dx1,1

dt
= β1x1,2 + β0x0,2 − αx1,1(x2,1 + x0,1)− αx1,1x2,2 + γ0,1x3

−δx1,1 +Q1

dx2,1

dt
= β2x2,2 + β1x1,2 − αx2,1(x0,1 + x1,1)− αx2,1x0,2 + γ1,2x3

−δx2,1 +Q2

dx0,2

dt
= αx0,1x1,1 − β0x0,2 − αx0,2x2,1 + γ2,1x3

−δx0,2

dx1,2

dt
= αx1,1x2,1 − β1x1,2 − αx1,2x0,1 + γ0,2x3

−δx1,2

dx2,2

dt
= αx2,1x0,1 − β2x2,2 − αx2,2x1,1 + γ1,0x3

−δx2,2

dx3

dt
= αx0,1x1,2 + αx1,1x2,2 + αx2,1x0,2 + x3(γ0,1 + γ0,2 + γ1,2)

−δx3.

2.5 Assembly of Heteromeric Chains

In order to provide a contrast to the affinity configurations that optimize the assembly efficiency
of rings (section 4.3.2), we considered a model of the assembly of heteromeric chains (whose
optimization we consider in section 4.3.3). We derived equations for the assembly of chains in a
manner exactly analogous to that for rings as described in section 2.2. Given the similarities
between the ring and chain case, we will not describe ODEs for chains of arbitrary length. We
will instead restrict our discussion to chains of length four; these chains have exactly the same
number of interactions as three-membered rings, allowing for direct comparison between the two
cases (e.g. Fig. 4A in the main text).

In the equations that follow, we denote the monomers that make up the four-chain c1, c2, c3, and
c4. By analogy to the notation for rings, ci,j is used to denote the concentration of the species
that starts at subunit ci and is of length j. βi denotes the off rate for the interaction connecting
subunit ci to ci+1. As with rings, α denotes the on rate, δ the degradation rate, and Q the
monomer synthesis rate.
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Assembly of a Heteromeric Chain of Length Four

dc1,1

dt
= β1(c1,2 + c1,3 + c1,4)− αc1,1(c2,1 + c2,2 + c2,3)

dc2,1

dt
= β2(c2,2 + c2,3) + β1c1,2 − αc2,1(c3,1 + c3,2 + c1,1)

dc3,1

dt
= β3c3,2 + β2(c1,3 + c2,2)− αc3,1(c4,1 + c2,1 + c1,2)

dc4,1

dt
= β3(c1,4 + c2,3 + c3,2)− αc4,1(c3,1 + c2,2 + c1,3)

dc1,2

dt
= β2(c1,3 + c1,4) + αc1,1c2,1 − αc1,2(c3,1 + c3,2)− β1c1,2

dc2,2

dt
= β3c2,3 + β1c1,3 + αc2,1c3,1 − αc2,2(c4,1 + c1,1)− β2c2,2

dc3,2

dt
= β2(c1,4 + c2,3) + αc3,1c4,1 − αc3,2(c2,1 + c1,2)− β3c3,2

dc1,3

dt
= β3c1,4 + α(c1,1c2,2 + c1,2c3,1)− αc1,3c4,1 − c1,3(β1 + β2)

dc2,3

dt
= β1c1,4 + α(c2,1c3,2 + c2,2c4,1)− αc2,3c1,1 − c2,3(β2 + β3)

dc1,4

dt
= α(c1,1c2,3 + c1,2c3,2 + c1,3c4,1)− c1,4(β1 + β2 + β3)

Assembly of a Heteromeric Chain with Model A Degradation

dc1,1

dt
= β1(c1,2 + c1,3 + c1,4)− αc1,1(c2,1 + c2,2 + c2,3)− δc1,1 + δ(c1,2 + c1,3 + c1,4) +Q

dc2,1

dt
= β2(c2,2 + c2,3) + β1c1,2 − αc2,1(c3,1 + c3,2 + c1,1)− δc2,1 + δ(c2,2 + c2,3 + c1,2) +Q

dc3,1

dt
= β3c3,2 + β2(c1,3 + c2,2)− αc3,1(c4,1 + c2,1 + c1,2)− δc3,1 + δ(c3,2 + c1,3 + c2,2) +Q

dc4,1

dt
= β3(c1,4 + c2,3 + c3,2)− αc4,1(c3,1 + c2,2 + c1,3)− δc4,1 + δ(c1,4 + c2,3 + c3,2) +Q

dc1,2

dt
= β2(c1,3 + c1,4) + αc1,1c2,1 − αc1,2(c3,1 + c3,2)− β1c1,2 − 2δc1,2 + δ(c1,3 + c1,4)

dc2,2

dt
= β3c2,3 + β1c1,3 + αc2,1c3,1 − αc2,2(c4,1 + c1,1)− β2c2,2 − 2δc2,2 + δ(c2,3 + c1,3)

dc3,2

dt
= β2(c1,4 + c2,3) + αc3,1c4,1 − αc3,2(c2,1 + c1,2)− β3c3,2 − 2δc3,2 + δ(c1,4 + c2,3)

dc1,3

dt
= β3c1,4 + α(c1,1c2,2 + c1,2c3,1)− αc1,3c4,1 − c1,3(β1 + β2)− 3δc1,3 + δc1,4

dc2,3

dt
= β1c1,4 + α(c2,1c3,2 + c2,2c4,1)− αc2,3c1,1 − c2,3(β2 + β3)− 3δc2,3 + δc1,4

dc1,4

dt
= α(c1,1c2,3 + c1,2c3,2 + c1,3c4,1)− c1,4(β1 + β2 + β3)− 4δc1,4
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Assembly of a Heteromeric Chain with Model B Degradation

dc1,1

dt
= β1(c1,2 + c1,3 + c1,4)− αc1,1(c2,1 + c2,2 + c2,3)− δc1,1 +Q

dc2,1

dt
= β2(c2,2 + c2,3) + β1c1,2 − αc2,1(c3,1 + c3,2 + c1,1)− δc2,1 +Q

dc3,1

dt
= β3c3,2 + β2(c1,3 + c2,2)− αc3,1(c4,1 + c2,1 + c1,2)− δc3,1 +Q

dc4,1

dt
= β3(c1,4 + c2,3 + c3,2)− αc4,1(c3,1 + c2,2 + c1,3)− δc4,1 +Q

dc1,2

dt
= β2(c1,3 + c1,4) + αc1,1c2,1 − αc1,2(c3,1 + c3,2)− β1c1,2 − δc1,2

dc2,2

dt
= β3c2,3 + β1c1,3 + αc2,1c3,1 − αc2,2(c4,1 + c1,1)− β2c2,2 − δc2,2

dc3,2

dt
= β2(c1,4 + c2,3) + αc3,1c4,1 − αc3,2(c2,1 + c1,2)− β3c3,2 − δc3,2

dc1,3

dt
= β3c1,4 + α(c1,1c2,2 + c1,2c3,1)− αc1,3c4,1 − c1,3(β1 + β2)− δc1,3

dc2,3

dt
= β1c1,4 + α(c2,1c3,2 + c2,2c4,1)− αc2,3c1,1 − c2,3(β2 + β3)− δc2,3

dc1,4

dt
= α(c1,1c2,3 + c1,2c3,2 + c1,3c4,1)− c1,4(β1 + β2 + β3)− δc1,4

2.6 A note on numerical methods

Numerical integration of the ODEs described in the above sections was carried out in MATLAB
7 [9], using the “ode15s” function with parameters AbsTol = 1 · 10−15 and
RelTol = 2.22045 · 10−14. All analytical work was performed using Mathematica 7 [10]. The
statistical analyses described in sections 4.1.2 and 5 were carried out using the R statistical
computing package [11].

3 Equilibrium and steady-state solutions for the homomeric 3-membered ring

3.1 Equilibrium results without synthesis or degradation

In section 2.1.4, we provided an example of the system of ordinary differential equations
representing the dynamics of a simple, homomeric three-membered ring (equation 8). It is
straightforward to solve for the concentrations of each of the intermediates at equilibrium. To
review, the concentration of the monomer is represented by X1, the dimer by X2 and the trimer
by X3. We also introduce the variable XT ≡

∑n
i=1 i ·Xi to represent the total concentration of
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protein in the system. Setting the three differential equations in equation 8 to 0, we have:

X3 =
X1 ·X2

3Kγ

X2 =
X2

1

KD
,

where Kγ = γ/α = 1
c0
·K2

D · e
−∆G0

p/RT is used for notational convenience (see section 1).
Combining the above relationships with the conservation of mass results in the cubic equation:

X3
1

(
1

Kγ ·KD

)
+X2

1

(
2

KD

)
+X1 −XT = 0. (23)

Equation 23 can be solved for X1 trivially using the cubic formula (using Mathematica [10]), with
the positive, real solution representing the equilibrium value of X1. Given the length of the
solution, we do not reproduce the full formula here.

To examine the distribution of mass among the various intermediates, we introduce Yi ≡ i ·Xi/XT

which represents the fraction of total protein in the system found in the intermediate of length i.
A plot of the equilibrium values of Y1, Y2 and Y3 as a function of XT is shown in Figure 3. There
is a transition between monomers and trimers as XT is decreased; note that the stability of rings
is such that this transition occurs at small values of XT even when the individual affinities are
fairly weak (KD ∼ 10−5 M). Dimers are always rare at equilibrium (Y2 < 10−5), regardless of XT .

3.2 Steady-state results including synthesis and degradation

3.2.1 Model A: subunit deletion

In section 2.4.1, we provided an example of model A-type synthesis and degradation for the
homomeric three-membered ring (equation 15). To calculate the change in total monomer
concentration, XT , over time, we recall that XT = X1 + 2X2 + 3X3 for a homomeric
three-membered ring and find:

dXT

dt
=

dX1

dt
+ 2

dX2

dt
+ 3

dX3

dt
= Q− δX1 + 2δX2 − 4δX2 + 6δX3 − 9δX3

= Q− δ(X1 + 2X2 + 3X3)

= Q− δXT .

This gives the obvious result at steady state:

XT =
Q

δ
. (24)

To calculate the steady-state concentration of the various species in this case, we begin by
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Figure 3: The equilibrium fraction of monomers and trimers for a homomeric three-membered ring as a
function of total subunit concentration. “Yi” represents Y1 or Y3 as defined in the text. Y2 is so small at all
values of XT that it cannot be seen here. In this case, we have KD = 10−5, which gives Kγ ∼ 10−17. The
transition between monomers and trimers is centered around an XT of 10−10 in this case.

considering X3:

0 = αX1 ·X2 − 3γX3 − 3δX3

X3 =
X1 ·X2

3 (Kγ +Kδ)
, (25)

where Kγ ≡ γ/α was defined in section 1 and a new constant Kδ ≡ δ/α is introduced. Turning to
X2, we have:

0 = αX2
1 − βX2 − αX1 ·X2 + 3γX3 − 2δX2 + 3δX3

= αX2
1 − βX2 − 2δX2

X2 =
X2

1

KD + 2Kδ
, (26)

where the reduction between the first and second lines is due to the identity in equation 25 above.
Combining equation 26 with equation 25 gives:

X3 =
X3

1

3 (Kγ +Kδ) (KD + 2Kδ)
. (27)
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From the differential equation for X1 we obtain:

0 = 2βX2 − 2αX2
1 − αX1 ·X2 + 3γX3 − δX1 + 2δX2 +Q.

Dividing through by δ and recalling equation 24, we obtain:

0 = 2

(
KD

Kδ

)
X2 − 2

X2
1

Kδ
− X1 ·X2

Kδ
+ 3

(
Kγ

Kδ

)
X3 −X1 + 2X2 +XT .

Substituting using equations 27 and 26, we obtain the cubic equation:

0 = X3
1

(
Kγ

Kδ (Kγ +Kδ) (KD + 2Kδ)
− 1

Kδ (KD + 2Kδ)

)
+

+X2
1

(
2KD

Kδ (KD + 2Kδ)
+

2

KD + 2Kδ
− 2

Kδ

)
−X1 +XT . (28)

As in section 3.1, it is straightforward to solve the above equation, but due to the length of the
formula we do not reproduce it here.

Although equation 28 is true for any set of parameters, recall from section 1 that γ � β. For the
parameters that we consider here in this work (KD’s generally lower/stronger than 10−5 M and
protein half-lives less than 108 s), we have γ � δ. We can obtain a slightly simplified version of
equation 28 for the parameters we consider by noting that KD +Kγ ≈ KD and Kγ/KD ≈ 0:

0 =
−X3

1

Kδ (KD + 2Kδ)
+X2

1

(
2KD

Kδ (KD + 2Kδ)
+

2

KD + 2Kδ
− 2

Kδ

)
−X1 +XT . (29)

The results displayed in Fig. 2C of the main text, where we plot Y3 vs. KD, are calculated using
the positive real solution of equation 29.

Given the solutions to either equation 28 or 29, it is natural to ask whether one can obtain a
closed-form solution for the value of KD that maximizes Y3 by solving the equation
dY3/dKD = 0. Unfortunately, the derivatives in question are extremely complex and as such we
have not yet found an analytical solution for the KD that provides maximum yield.

3.2.2 Model B: whole-complex degradation

A mathematical description of model B-type degradation can be found in section 2.4.3. Here we
consider the case of a homomeric three-membered ring, equation 20. As with model A above, we
can easily show:

dXT

dt
= Q− δ (X1 + 2X2 + 3X3)

= Q− δXT ,
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which at steady state yields XT = Q/δ as with model A. We first solve for X3 at steady state:

X3 =
X1 ·X2

3Kγ +Kδ
. (30)

In the case of model B, degradation of the full ring does not produce a dimer, and so the αX1 ·X2

term in the equation for dX2/dt does not cancel as was the case for model A. This yields a
considerably more complicated equation for X2:

X2 =
X2

1

X1

(
1− 3Kγ

3Kγ+Kδ

)
+KD +Kδ

. (31)

The equation for X1 at steady state can be written:

0 = 2

(
KD

Kδ

)
X2 − 2

X2
1

Kδ
− X1 ·X2

Kδ
+ 3

(
Kγ

Kδ

)
X3 −X1 +XT . (32)

Using equations 30 and 31 we can rewrite equation 32, which after simplifying and collecting
terms of the same order yields a cubic equation:

0 = −3KδX
3
1 − 3KδX

2
1 (Kδ + 2Kγ)−KδX1(KD(Kδ + 3Kγ) +Kδ(Kδ + 3Kγ −XT )) +

+KδXT (KD +Kδ)(Kδ + 3Kγ). (33)

As discussed at the end of section 3.2.1 above, we generally have Kγ � Kδ. Using this fact, we
can obtain a somewhat simpler version of equation 33:

0 = −3KδX
3
1 − 3K2

δX
2
1 −K2

δX1(KD +Kδ −XT ) +K2
δXT (KD +Kδ). (34)

Analytical results for model B are calculated using the positive real solution of equation 34. As
with model A, we have not obtained a closed-form analytical solution for the KD that maximizes
Y3 using either equation 33 or 34.

Despite their similarities, the dependence of Y3 on the parameters of the system differs
considerably between model A and model B. A detailed analysis of these differences (obtained
using the analytical results presented here in addition to results from numerical integration) can
be found in section 4.2.2.

3.2.3 Model A degradation for a homomeric chain

As discussed above, for homomeric rings we have found that intermediate affinities can maximize
the yield of the full structure at steady state for both of our models of degradation. Here we
examine this phenomenon in the case of chain-like structures by considering a simple homodimer
under model A degradation. In this case, we have only two types of intermediates (with variables
X1 and X2 for the concentration of the monomer and dimer, respectively). For this homodimer,
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we have the following simple system of ODEs:

dX1

dt
= −2αX2

1 + 2βX2 +Q− δX1 + 2δX2

dX2

dt
= αX2

1 − βX2 − 2δX2. (35)

It is simple to verify that, for XT ≡ X1 + 2X2, we have XT = Q/δ at steady state. From equation
35, we have:

X2 =
X2

1

KD + 2Kδ
(36)

at steady state. Combining this result with the first equation in 35, we get the quadratic equation:

0 = X2
1

(
2KD

Kδ(KD + 2Kδ)
+

2

KD + 2Kδ
− 2

Kδ

)
−X1 +XT

for X1 at steady state. Solving this yields:

X1 =
1

4

(
−KD − 2Kδ +

√
KD + 2Kδ ·

√
8XT +KD + 2Kδ

)
. (37)

Unlike the ring models discussed above, it is simple to differentiate Y2 with respect to KD to find
the KD at which yield of the homodimer is maximized. We get:

dY2

dKD
=
−4XT −KD −Kδ +

√
KD + 2Kδ ·

√
8XT +KD + 2Kδ

4XT

√
KD + 2Kδ ·

√
8XT +KD + 2Kδ

, (38)

where we have dY2/dKD < 0 for XT 6= 0. To show this, simply note that dY2/dKD ≥ 0 implies:

− (4XT +KD + 2Kδ) +
√
KD + 2Kδ ·

√
8XT +KD + 2Kδ ≥ 0

4XT√
KD + 2Kδ

+
√
KD + 2Kδ ≤

√
8XT +KD + 2Kδ(

4XT√
KD +Kδ

)2

+ 8XT +KD + 2Kδ ≤ 8XT +KD + 2Kδ

X2
T ≤ 0. (39)

Since XT is real, equation 39 can only be satisfied when XT = 0, where dY2/dKD is trivially
equal to 0 for all values of KD. Strengthening the interactions (i.e. decreasing KD) thus always
increases the yield of the chain. Although this result is very intuitive, it nonetheless provides a
counterpoint to the behavior of ring-like structures, where increasing affinity does not necessarily
increase the yield of the complex (e.g. Fig. 2C in the main text). Our numerical results on
heteromeric chains of length four (section 4.3.3) are consistent with the above results.
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4 Additional results

4.1 Ring assembly dynamics and deadlock

4.1.1 Effects of affinity and concentration on ring assembly

As discussed in the main text, homomeric rings with uniformly strong interactions between
subunits can exhibit a long-lasting assembly deadlock, or “plateau,” during which formation of
the fully assembled ring is blocked due to the persistence of incompatible intermediates (see Fig.
2A in the main text). In this section we further illustrate the effects of affinity and subunit
concentration on assembly dynamics.

As shown in Figure 4A, weakening affinities progressively delays the process of ring assembly due
to the lack of stability of assembly intermediates. With a monomer concentration of 400 nM, at
very weak affinities (KD > 10−4 M) the balance of protein complexes at equilibrium begins to
shift away from trimers towards monomers (see also Figure 3 in section 3.1). By contrast, strong
interactions induce the plateau, shown in Figure 4B. While increasing affinities progressively
increases the duration of the plateau phase, the plateau always halts assembly at the same
concentration of fully assembled complex—that is, the plateau “height” is invariant for a
particular ring size. These results demonstrate that for ring assembly efficiency, there exists an
optimal affinity for any given ring size and subunit concentration.
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Figure 4: Effect of affinity on ring assembly dynamics. Shown are the results of numerical simulation of the
ordinary differential equations for the three-membered homomeric ring (equation 8). α = 2.53 ·106 M−1 s−1,
initial monomer concentration of 400 nM. (A) Weaker-than-optimal interactions. (B) Stronger-than-optimal
interactions.

The initial concentration of monomers also affects the ring assembly dynamics, as shown in
Figure 5. Reducing the monomer concentration delays assembly, due to the lower frequency of
interaction between subunits (e.g., the red curve). Increasing the monomer concentration induces
a plateau phase, but, importantly, higher concentrations induce the plateau at progressively
earlier timescales. While this allows for shorter waiting times to reach percentage yields smaller
than the plateau percentage (purple curve), it ultimately does not affect the time taken to achieve
yields greater than the plateau (overlap of the purple, blue and green curves). By contrast,
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increasing affinities while keeping monomer concentration constant induces a plateau phase that
progressively delays assembly for these higher yields, while leaving the time taken to reach the
sub-plateau yields completely unaffected (Figure 4B).
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Figure 5: Effect of initial monomer concentration on ring assembly dynamics. Numerical simulations
of the ordinary differential equations for the three-membered homomeric ring (equation 8). α = 2.53 ·
106 M−1 s−1, β = 2.53 · 10−3 s−1, KD = β/α = 10−9 M.

The different role played by affinity vs. concentration in ring assembly dynamics can be explained
as follows. Since the plateau phase results from the persistence of incompatible intermediates, the
time of initiation of the plateau phase is determined by the rate of complex formation, which is in
turn determined by the on rate α and the concentration of monomers. However, the resolution of
the plateau phase is determined by the timescale of dissociation of the interactions: the more
stable the incompatible intermediates are, the longer the average waiting time until they
dissociate and return subunits to the pool.

These observations also allow us to make the prediction that in experimental assays of the
assembly of homomeric rings (e.g., of the type described by Kress et al. [12]), one should always
be able to induce the plateau by increasing the monomer concentration. Actually observing the
plateau, however, requires that the time resolution of the experiment be sufficiently small, which
may prove difficult in certain cases. It is also important to note that the plateau effect will be
difficult to observe unless the data from the assay is plotted on a logarithmic time scale.

4.1.2 Scaling of plateau height with ring length

As mentioned in the main text, we find that the length of the ring in question has a strong
influence on the concentration of fully formed rings observed during the “plateau” phase of the
dynamics. We find that the value of Yn = n ·Xn/XT observed at the plateau is an invariant
function of concentration for fixed ring length (Figures 4 and 5) and that increasing ring length
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decreases Yn in the plateau phase (Figure 6).
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Figure 6: Effect of ring length on ring assembly dynamics. Numerical simulations of the ordinary differential
equations for homomeric ring assembly described in section 2.1.3. α = 2.53 · 106 M−1 s−1, KD = 10−12 M,
initial monomer concentration of 400 nM. The plateau occurs at progressively lower yields as ring length
increases.
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Figure 7: Effect of ring length on plateau height. Both panels represent data from numerical simulations
of the ordinary differential equations for homomeric ring assembly described in section 2.1.3. α = 2.53 ·
106 M−1 s−1. Initial monomer concentrations set to n · 40nM. Plateaus calculated numerically by sampling
the fraction of full complex at t = 108 seconds in the presence of very strong interactions (KD = 10−24 M).
(A) Here we plot Yn directly for rings of length 3 to 22. Note the difference between rings with odd and
even lengths. (B) Here we plot the same data as in (A), but using the inverse of the plateau height (Y −1

n )
for the y coordinate. The solid lines represent the best linear fits to the data, with Y −1

n = 0.320n + 0.521
for odd rings and Y −1

n = 0.320n+ 0.430 for even rings.

The regular relationship between “plateau height” and ring length is shown in Figure 7.
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Interestingly, we observe that odd and even rings have slightly different scaling (Figure 7A). In
both cases, the relationship between Y −1

n and n is approximately linear at the plateau (Figure
7B). For odd rings, we have Y −1

n = 0.320n+ 0.521 with p < 2 · 10−16 for both coefficients. For
even rings, we have Y −1

n = 0.320n+ 0.430, again with p < 2 · 10−16 for both coefficients. Although
the difference in intercepts is slight (Figure 7B), we find that the intercept terms are likely
distinct, in that their 95% confidence intervals do not overlap. The slope terms, however, are
statistically indistinguishable.

At present, we have not determined an exact analytical relationship that can explain the scaling
of plateau height with n that we observe.

4.1.3 Assembly time as a function of affinity, ring length, and concentration

The dependence of ring assembly dynamics on affinity, concentration, and ring length, described
in sections 4.1.1 and 4.1.2, can be summarized by plotting assembly time as a function of these
three variables, as shown in Figure 8. As described in the main text we describe assembly
efficiency using TX . This is the amount of time it takes a system that starts out with 100%
monomers to reach X% of the maximum concentration of the full ring. Each panel within Figure
8 consists of a series of curves showing the assembly time of the ring as a function of affinity; each
curve within the panel represents a starting monomer concentration, as denoted in the figure
legend. The first row of panels represent the results for a ring of length three; the second row, a
ring of length seven. The columns of the plot show the assembly-time curves for target yields of
99%, 75% and 50% (i.e., T99, T75, and T50).

The plots in Figure 8 highlight a number of the dynamic effects described in depth in sections
4.1.1 and 4.1.2 above:

• In each plot, the curves have distinct minima at which assembly time is optimized for that
ring length and concentration. Assembly time increases when affinities are either stronger or
weaker than this optimal level. The notable exception to this pattern is the T50 curve for
the three-ring, in which each curve is nearly flat when interactions are strong. This is due to
the fact that for the three-ring, 50% yield is reached before the plateau phase begins, so
affinity has minimal effect on the T50 (see Figure 4B). By contrast, for the ring of length
seven, T50 increases when interactions are strong: this is due to the fact that the plateau
phase has already occurred (at approximately 36% yield—see Figures 6 and 7A), and hence
its duration becomes rate-limiting for assembly measured by T50.

• Generally, increasing concentration decreases assembly time by increasing the rate of
association between subunits (violet curves are always lower than red curves). However,
when interactions are very strong, increasing concentration has minimal effect on assembly
time because the rate of dissociation of the incompatible intermediates during the plateau
phase becomes the rate-limiting process (see Figure 5).

• For larger rings, having weaker-than-optimal interactions incurs a greater “penalty” in
terms of assembly time than for shorter rings. This can be seen in the much greater upward
slope of the families of curves at weaker-than-optimal interactions for rings of length seven.
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This phenomenon is due to the fact that, when weak affinities are the limiting factor in
assembly, the larger intermediates that must form during the assembly of larger rings are
more likely to break apart before finding a suitable binding partner to form the full ring.
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Figure 8: Assembly time as a function of affinity, concentration, and ring length. Times to reach 99%,
75% or 50% yield (T99, T75, and T50, respectively) were calculated by numerical simulation of the ordinary
differential equations for homomeric ring assembly described in section 2.1.3. α = 2.53 · 106 M−1 s−1 for all
simulations.

An additional aspect of the dynamics that can be seen in Figure 8 is that the affinity yielding
optimal concentration (the minimum of each curve) changes as a function of the concentration.
This is shown clearly for the homomeric three- and seven-rings in Figure 9. The relationship
between the KD yielding the fastest assembly (lowest T99) and the initial monomer concentration
is linear with a numerically calculated relationship of y = 1

40x for the three-ring, and
y = 4.457 · 10−3x− 4.521 · 10−14 for the seven-ring.

4.2 Synthesis and degradation

4.2.1 Ring assembly dynamics with synthesis and degradation

As discussed in sections 2.4 and 3.2, we also explored the effect of synthesis and degradation on
the dynamics of ring assembly. In this section we include additional numerical and analytical
results from these models.

Figure 10 shows the assembly dynamics of the homomeric three-ring in the case of model A
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Figure 9: Optimal affinity as a function of monomer concentration. For each concentration shown, results
were calculated by varying the KD in increments of 10

1
4 , performing numerical simulation of the differential

equations given in section 2.1.3, and identifying the KD leading to the lowest T99. α = 2.53 · 106 M−1 s−1.
The plot is scaled logarithmically to show the entire range of numerical data. A fit yields a slope of 1, that
is, a linear relationship between optimal KD and monomer concentration, as detailed in the text.

(Figure 10A) and model B (Figure 10B) degradation. In the presence of synthesis and
degradation, assembly reaches a steady state where the yield of the full ring is less than 100%, and
the concentrations of intermediate species are non-zero (compare to Fig. 2A in the main text).
Furthermore, the steady-state yield of the ring is higher in the presence of model B degradation
than for model A degradation, using nominally identical rates for synthesis and degradation.
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Figure 10: Ring assembly in the presence of synthesis and degradation. Results based on numerical simulation
of the ordinary differential equations for the homomeric three-ring described in sections 2.4.1 and 2.4.3. The
parameter values for both the simulation in both plots are identical. As described in the main text, the
parameter values XT = Q/δ = 477 nM and δ = 2.75 · 10−4 s−1 are taken from averages in available
experimental data on yeast proteins [13, 14]. From these numbers, we can calculate Q = XT · δ = 1.31 ·
10−10 M s−1. For these simulations, we also have α = 2.53 · 106 M−1 s−1, KD = 10−12 M. (A) Degradation
model A. (B) Degradation model B.
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4.2.2 Effect of KD and synthesis rate on assembly yield

As with assembly time (see Figure 4), the steady-state yield of the full complex in the presence of
synthesis and degradation is sensitive to the affinities between subunits. Figure 11 shows the
effect of varying the affinity on the dynamics of formation of the full ring, in the presence of
model A-type degradation. Going from very strong interactions to intermediate interactions, the
steady-state yield improves (red vs. green curve). However, further weakening of the interactions
rapidly diminishes yield (green vs. blue curve). This result indicates that in the presence of
synthesis and degradation, interactions that are weaker or stronger than an optimal value will
diminish the yield of the ring.
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Figure 11: Assembly dynamics of full ring vs. affinity in the presence of synthesis and degradation. Degra-
dation model A, other parameters as for Figure 10.

In the case of the homomeric three-ring, we can explore this effect both numerically and
analytically (see section 3.2 and Fig. 2C in the main text). The results of this analysis for both
model A and model B are shown in Figure 12. As also demonstrated in Figure 11, very strong
interactions can suppress the assembly of the full complex, though the extent of this effect is
dependent on the model for degradation that is assumed (see also Figure 14).

These differences between the degradation models can be understood by referring to the
timecourses of assembly in the presence of strong interactions, shown in Figure 10. In model A
degradation (Figure 10A), the likelihood of a complex experiencing a deletion event increases in
proportion with its length, since the deletion rate δ applies to subunits rather than complexes.
The fully assembled rings are thus subject to a higher rate of degradation than lower-order
intermediates. In addition, deletion of a subunit from a trimer produces a dimer; since dimers
cannot interact to form trimers and will tend to persist in the presence of strong interactions,
model A degradation leads to a steady state in which dimers occupy a relatively larger fraction of
total mass, at the expense of trimers. In model B degradation (Figure 10B), monomers, dimers,
and trimers are all equally likely to experience degradation, and degradation of a trimer removes
it completely from the system rather than giving rise to an assembly-incompatible dimer.
Therefore when the model B system has reached steady state it produces a relatively larger yield
of trimers than model A, and a lower balance of dimers. Since these simulations were performed
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Figure 12: Effect of binding strength on steady state yield of fully assembled complex in the presence
of synthesis and degradation. As in Figure 10, α = 2.53 · 106 M−1 s−1, Q = 1.31 · 10−10 M s−1, δ =
2.75 · 10−4 s−1, XT = Q/δ = 477 nM. In both cases, we can consider these curves to represent the effect of
varying affinity on rings formed from “average” yeast proteins [13,14]. (A) Model A degradation. Solid line
indicates analytical solution of equation 29; circles represent results from numerical integration of equation
15. (B) Model B degradation. Solid line indicates analytical solution of equation 34; circles represent results
from numerical integration of equation 20. Note difference in scale between (A) and (B).

with strong interactions, the steady state concentration of monomers is fairly low in both cases.

The steady state yield of the full ring depends not only on the affinity, but also on the rates of
synthesis and degradation as well as the total concentration of protein in the system. In an
analogous fashion to Figure 12, Figure 13 shows plots of yield vs. KD, but here each curve
represents a different value for the total amount of mass in the system XT , produced by changing
the synthesis rate Q while holding the degradation rate δ constant (changing Q and not δ allows
us to look specifically at the effect of changes in XT while leaving the parameter Kδ, the ratio
between the degradation rate δ and the association rate α, unchanged; see section 3.2). For each
curve, the yield Yn is calculated relative to the total amount of protein at steady state, given by
Q/δ (see section 3.2).

The curves in Figure 13 become higher for increasing XT , indicating that for any given affinity,
increasing the total amount of protein also increases the proportion of mass that assembles into
the full ring. In addition, the effect of affinity optimality also changes as a function of XT . At
very low XT , degradation, rather than deadlock, is the limiting factor in assembly, and hence
alleviating deadlock via affinity optimization has minimal effect in boosting steady state yield. At
very high XT , the larger influx of new monomers quickly alleviates deadlock, which again
mitigates the effect of overly strong interactions (purple curve). At intermediate synthesis rates,
strong interactions lead to a significant fraction of deadlocked intermediates at steady state,
which is alleviated by weakening interactions until an optimal yield is reached (green curve).
However, beyond the point of optimality, weakening affinities leads to reduced yield, regardless of
the total amount of protein in the system.
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Figure 13: Steady state yield as a function of KD and total protein concentration, model A degradation.
Results generated by numerical simulation of the ordinary differential equations described in section 2.4.1;
different values of XT were obtained by changing the value of the synthesis rate Q while holding δ at a
constant value of 2.75 · 10−4 s−1. α = 2.53 · 106 M−1 s−1.

The magnitude of the affinity optimality effect for both degradation models is summarized in
Figure 14. This figure tracks the increase in yield that can be achieved by using optimal
interactions rather than very strong interactions, for a range of values of XT . As discussed above
for Figure 13, the improvement in yield that can be gained by using optimal interactions is
dependent on the total amount of protein XT , and reaches a maximum of approximately 7.5% for
model A at XT = 24 nM with δ = 2.75 · 10−4. In addition, as discussed for Figure 12, model B
degradation exhibits a much less pronounced affinity optimality effect for all values for XT , with a
maximal improvement in yield of only 0.51% at XT = 6.0 nM.
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Figure 14: Improvement in assembly yield at optimal KD vs. very strong interactions (KD = 10−13) at
different values of XT . Results generated by numerical simulation of the ordinary differential equations
described in sections 2.4.1 and 2.4.3; different values of XT were obtained by changing the value of the
synthesis rate Q while holding δ at a constant value of 2.75 · 10−4 s−1. α = 2.53 · 106 M−1 s−1.
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Though the results shown in Figures 13 and 14 help to elucidate the underlying dynamics, our
analytical solutions for the homomeric three-ring for both model A (equation 29) and model B
(equation 34) reveal that the steady state yield is a complex function not only of KD and XT , but
also of the ratio of the degradation rate to the association rate, Kδ. We leave a thorough
characterization of the relative contributions of these different parameters to future work.
However, taken together, these results indicate that ring assembly efficiency can be inhibited by
uniformly strong interactions in the presence of synthesis and degradation, though the magnitude
of this effect depends on the particular model of degradation that is assumed and the choice of
synthesis and degradation parameters.

4.3 Effect of affinity configurations on assembly

To determine the effect of affinity configuration on the assembly efficiency of heteromeric rings, we
systematically sampled the space of possible configurations and performed numerical simulations
of assembly for each one. In this section we describe our methods for enumerating configurations
and present additional results for the assembly of 4-, 5-, and 6-membered heteromeric rings.

4.3.1 Enumerating distinct affinity configurations for heteromeric rings

To consider a large space of possible affinity configurations, we allowed the affinity at each
subunit interface to vary over seven orders of magnitude, with a KD of either 10−12, 10−11, 10−10,
10−9, 10−8, 10−7, or 10−6 M. If each subunit interface were considered to be distinct, this would
imply 73 = 343 unique configurations for the homomeric three-ring, 74 = 2401 for the four-ring,
and so on. However, as shown in Figure 15, such an approach would include many redundant
configurations differing only in the (arbitrary) labeling of the subunits. For example, having a
strong interaction between x0 and x1, a medium strength interaction between x1 and x2, and a
weak interaction between x2 and x0 (a configuration we will denote S −M −W , with the
abbreviated affinities enumerated in subunit counting order—see section 2.2.1), is equivalent in its
assembly properties to the configuration having a medium strength interaction between x0 and
x1, a weak interaction between x1 and x2, and a strong interaction between x2 and x0 (a
configuration we denote M −W − S, using the same convention). The equivalence arises from the
fact that the S −M −W arrangement of interactions can be converted into the M −W − S
arrangement simply by shifting the labels of the subunits around the ring one position while
preserving their sequential ordering. By thus considering the rotational symmetry of the
interactions around the ring we can ignore these dynamically identical configurations.

In addition, since the affinity configurations under consideration are two-dimensional and do not
distinguish a “top” or “bottom” for the ring, to identify unique configurations we must also note
that the subunit counting direction—clockwise vs. counter-clockwise—also does not affect the
dynamics. Changing the subunit counting direction is equivalent to reflecting the subunit labels
about an axis in the plane, which can also be imagined as “flipping” the ring structure over. As
shown in Figure 15, if the subunit labels for the ring with the affinity configuration S −M −W
are “flipped over” or reflected, it results in the nominally distinct configuration W −M − S; while
the counting order of the interactions has changed from clockwise to counter-clockwise, the
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Figure 15: Ring symmetries. A unique affinity configuration can be given several different names depending
on how subunits are labeled or counted. To identify all unique affinity configurations, all possible notation-
ally distinct configurations are considered and then redundant configurations are eliminated. Redundant
configurations are identified by their equivalence to an existing configuration via rotational symmetry, cor-
responding to a change in the placement of the first subunit label x0 along the ring, or by symmetry of
reflection, corresponding to a change in the direction in which subunits are enumerated. By considering
these two types of symmetry, the six notationally distinct affinity configurations shown can be seen to be
equivalent, and represented by a single member, S −M −W .

assembly dynamics of the configuration have not changed. Thus, nominally distinct
configurations that are identical by the symmetries of rotation and reflection can be ignored, and
only one representative of the family of equivalent configurations need be considered for analysis.

Proceeding in this fashion, we enumerated the unique affinity configurations for the 3-, 4-, 5-, and
6-membered rings, allowing the KD at each interface to vary over seven orders of magnitude as
described above. With the exclusion of configurations that are redundant by symmetry, we obtain
a significantly reduced number of possible configurations (see Table 1).

Ring Length Unique Configurations

3 81
4 406
5 1,855
6 10,528
7 60,028

Table 1: Numbers of distinct affinity configurations for rings of different lengths after accounting for sym-
metries (see Figure 15).
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4.3.2 Numerical simulation results for the heteromeric 3-, 4-, 5-, and 6-rings

For each of the affinity configurations enumerated as above we ran numerical simulations of
heteromeric ring assembly using the systems of ordinary differential equations described in
sections 2.2.2, 2.4.2 and 2.4.4.

For the three-ring (Fig. 3A in the main text, reproduced here as Figure 16), the results show that
configurations involving either one or two weak interactions assemble more efficiently than
configurations involving uniform interactions. As shown in the inset plots, the differences in
efficiency between configurations with one or two weak interactions are very small in absolute
terms. It is also worth noting that the relative T99 rankings of one- versus two-weak interaction
configurations is dependent in part on monomer concentration, while the model A and model B
rankings are not.

0

10

20

30

40

50

60

70

80

R
a

n
k
in

g

One Weak

Two Weak

All Medium

All Weak

All Strong

0 20 40 60 80102

104

106

Ranking

T 99
 [s

]

0 20 40 60 800.9

0.92

0.94

0.96

0.98

Ranking

Yi
el

d

 

 

Model A
Model B

T99 Model A Yield Model B Yield
0

10

20

30

40

50

60

70

80

90

R
an

ki
ng

 

 

One Weak
Two Weak
All Medium
All Weak
All StrongYield, A Yield, BT99

Figure 16: Ranking the assembly efficiency and yield of affinity configurations for the heteromeric three-
ring. This figure corresponds to Fig. 3A in the main text and is included here for completeness. For
calculation of T99, simulations were performed with initial monomer concentrations of 477 nM for each
subunit. For simulations of model A and model B degradation, Q = 1.31·10−10 M s−1 and δ = 2.75·10−4 s−1.
XT = Q/δ = 477 nM. For all simulations, α = 2.53 · 106 M−1 s−1. “One Weak” denotes a configuration
with binding strengths (i.e., KDs) of 10−12, 10−12, and 10−6 M. “Two Weak”: 10−12, 10−6, and 10−6 M;
“All Medium”: 10−8, 10−8, and 10−8 M; “All Weak”: 10−6, 10−6, and 10−6 M; “All Strong”: 10−12, 10−12,
and 10−12 M.

For the four-ring (Figure 17), the configuration containing alternating strong and weak
interactions outranked other configurations based on T99 and model A yield; for model B,
however, the configuration with a single weak interaction resulted in the highest yield.
Configurations with either one or two weak interactions (with the rest strong) outperformed
configurations with uniform interactions or more than two weak interactions.

The results for the five-ring (Figure 18) were similar to those for the four-ring: again,
configurations with two weak interactions assembled with the lowest values for T99, slightly ahead
of the one-weak interaction configuration. However, the one-weak interaction configuration
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Figure 17: Ranking the assembly efficiency and yield of affinity configurations for the heteromeric four-ring.
Parameters as for Figure 16. “S”, “M”, and “W” denote strong (KD = 10−12 M), medium (KD = 10−8 M),
and weak (KD = 10−6 M) interactions, respectively.

produced the highest model B yield. Configurations with uniform affinities assembled both with
low efficiency and low yield. Interestingly, changing the strength of one interaction in the
configuration S − S − S −W −W from strong to medium (resulting in the configuration
S − S −M −W −W ) dramatically reduces its performance relative to the other configurations.
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Figure 18: Ranking the assembly efficiency and yield of affinity configurations for the heteromeric five-ring.
Parameters as for Figure 16; “S”, “M”, and “W” denote strong (KD = 10−12 M), medium (KD = 10−8 M),
and weak (KD = 10−6 M) interactions, respectively.
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The results for the six-ring (Figure 19) also indicate the assembly efficiency of rings with either
one or two weak interactions. Both configurations with two weak interactions slightly outperform
the one-weak interaction configuration for T99 and model A yield, while the one-weak interaction
produces a higher model B yield. All three outperform uniform configurations or configurations
with more than two weak interactions. Interestingly, the configuration with alternating strong
and weak interactions does not perform as well by any metric as the configurations with either
one or two weak interactions. This result, along with the results for the four-ring, in which
alternating strong-weak interactions performed very well, suggests that the key to assembly
efficiency is not alternating strong and weak interactions in and of itself, but the presence of two
weak interactions. This may be due to the fact that a ring with two weak interactions may be
able to assemble in two halves that then “snap” together to form a stable ring.
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Figure 19: Ranking the assembly efficiency and yield of affinity configurations for the heteromeric six-ring.
Parameters as for Figure 16. “S”, “M”, and “W” denote strong (KD = 10−12 M), medium (KD = 10−8 M),
and weak (KD = 10−6 M) interactions, respectively.

4.3.3 Optimizing the assembly of chains

To provide a contrast to our results for heteromeric three-membered rings (Figure 16), we
considered how affinity configuration influences the assembly efficiency of four-membered
heteromeric chains. Although these two structures share the same number of interactions, chains
lack the rotational symmetry of rings, and as such there are over twice as many distinct
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configurations in this case (196 for the chains vs. 81 for the rings). Given some affinity
configuration (and its attendant dissociation rates β1 to β3), we performed numerical simulations
of simple heteromeric chain assembly, assembly with model A degradation, and assembly with
model B assembly (the equations used for these calculations are listed in section 2.5).

The relative performance of these affinity configurations is compared in Figure 20. Since chains
are generally much less stable than rings (see section 1), most of the configurations sampled here
did not assemble to a level of 99%, making it impossible to define T99 as for rings. In simulations
that did not consider synthesis and degradation, we thus calculated equilibrium yield instead
(“Eq. Yield” in Figure 20). Note that, in stark contrast to the behavior for rings, for chains
stronger is always better, regardless of the efficiency metric in question.
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Figure 20: Ranking the assembly efficiency and yield of affinity configurations for the heteromeric 4-
membered chain. Given that most affinity configurations do not assemble to 99% at the concentration
considered here, in this case we use equilibrium yield (the ‘Eq. Yield’ column to the far left of the ranking
plot) rather than T99 to characterize assembly efficiency in the absence of synthesis and degradation. The
equilibrium yields were calculated at a total concentration of 477 nM for each monomer type. For simulations
of model A and model B degradation, Q = 1.31 ·10−10 M s−1 and δ = 2.75 ·10−4 s−1. XT = Q/δ = 477 nM.
For all simulations, α = 2.53 · 106 M−1 s−1. “One Weak” denotes a configuration with binding strengths
(i.e., KDs) of 10−12, 10−12, and 10−6 M. “Two Weak”: 10−12, 10−6, and 10−6 M; “All Medium”: 10−8, 10−8,
and 10−8 M; “All Weak”: 10−6, 10−6, and 10−6 M; “All Strong”: 10−12, 10−12, and 10−12 M.

4.4 Hierarchical assembly pathways

As discussed in section 4.3 above, introducing weak interactions into heteromeric ring structures
can dramatically improve their assembly efficiency according to a wide variety of measures. In
this section we compare an alternative mechanism by which kinetic assembly bottlenecks can be
addressed: namely, the sequential, stepwise assembly of subunits to form the ring. In the case of
the heteromeric three-ring, this type of assembly would imply that, for example, x0 can bind x1,
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but the binding of x1 to x2 is contingent on x1’s being bound to x0, and the binding of x2 to x0 is
similarly contingent on x2’s being bound to x1. This model represents a case where allosteric
interactions—or other sources of hierarchical structure—force assembly to proceed sequentially,
thus preventing the accumulation of assembly intermediates that are incompatible. Yin and
coworkers have deployed precisely this approach to optimize the assembly process of cyclic DNA
nanostructures [15]. To compare the assembly efficiency of this allosteric approach with the
biophysical strategies described in section 4.3, we created and analyzed a model of stepwise
assembly as described below.

4.4.1 Mathematical model of stepwise assembly

Before proceeding, we describe here the set of ordinary differential equations used to model the
assembly of a heteromeric three-ring via sequential, stepwise assembly. We use the notational
convention for heteromeric rings described in section 2.2.1. In this highly simplified model, there
is no binding between x1 and x2, or between x2 and x0, unless x0 has first bound to x1. As a
result, the concentrations of the dimers x1,2 and x2,2 are zero for all time. In addition, because
the ring breakage rate is much smaller than the dissociation rate (i.e., γ << β) for the parameter
values we consider below, for simplicity we ignore the process of ring breakage in this case (i.e. we
set γ = 0).

The ODEs are as follows:

dx0,1

dt
= βx0,2 − αx0,1x1,1

dx1,1

dt
= βx0,2 − αx0,1x1,1

dx2,1

dt
= −αx2,1x0,2

dx0,2

dt
= αx0,1x1,1 − βx0,2 − αx0,2x2,1

dx3

dt
= αx2,1x0,2. (40)

4.4.2 Comparing sequential assembly with weak interactions

To compare between sequential assembly and the biophysical strategies discussed in section 4.3,
we numerically integrated the ODEs from equation 40. In Figure 21 we compare the assembly
dynamics of this sequential model, a ring containing a single very weak interaction, and a ring
with uniformly strong interactions. In this case we have chosen affinity configurations such that
the uniform case and the single weak interaction case exhibit identical thermodynamic stabilities.
We find that the single weak interaction configuration always assembles faster than the sequential
case, although the magnitude of this difference varies with total monomer concentration.
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Figure 21: Assembly timecourses for three-membered heteromeric rings with uniform interactions (KDs of
10−9), one weak interaction (KDs of 10−12, 10−12, and 10−3), and sequential assembly (uniform KDs of
10−9). α = 2.53 · 106 M−1 s−1. For simplicity, the ring breakage rate γ is set to zero in all cases. (A)
Monomer concentration of 40 µM. (B) Monomer concentration of 0.4 nM. Although the three cases here
have equivalent thermodynamic stability, they display different assembly kinetics. Note that the “one weak
interaction” configuration consistently assembles faster than the sequential case, though the magnitude of
this difference depends on concentration.

The differences observed in Figure 21 can be best understood in terms of a schematic view of the
assembly process, Figure 22. In this illustration, we consider a pool of monomers A, B, and C
that interact with each other to form a heteromeric ring. For simplicity, we do not explicitly
consider trimer formation in this schematic, focusing entirely on the process of monomers binding
to form dimers.

For the non-sequential assembly models (Figure 22, panels A and B), there are three “paths” that
the system can take to assemble full rings from a starting pool of monomers: 1) bind A and B,
then C; 2) bind A and C, then B; 3) bind B and C, then A. Configurations with uniformly
strong interactions attempt to take all three paths simultaneously (represented by the fact that
all possible dimers are present in Figure 22A). When concentrations are high, the system
consumes all possible monomers too quickly, and since the interactions are strong, a plateau is
induced (as discussed above and in the main text). During the plateau phase, assembly via any
given path can only proceed when the system “backtracks” from one of the other paths through
dissociation of a dimer. Uniformly strong interactions thus lead to unavoidable deadlocks at high
concentrations (Figure 21A).

When one of the interactions along the ring is weak, although the system can in theory take all
three possible assembly paths, only two of those paths will actually be taken by the majority of
proteins in the system. If we make the A−C interaction weak, any monomers attempting to take
path number “2” by first forming an A− C interaction will ultimately be unsuccessful, since this
interaction will tend to break soon after formation. This fact is represented schematically in
Figure 22B by the lack of A−C dimers. As the schematic demonstrates, any monomers that take
a given path (say, by forming the stable A−B dimer) are guaranteed to have access to the
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Figure 22: Schematic diagram of ring assembly. Shown are the interactions that would form after an
arbitrary amount of time given a pool of monomers at equal concentrations and equivalent association rates.
For simplicity, only the formation of dimers is considered here. (A) Uniform interactions: all possible dimers
can form. (B) One weak interaction: A−B and B − C dimers can form, but encounters between A and C
do not result in a stable interaction. (C) Sequential assembly: only encounters between A and B result in a
stable interaction. Since the association rates are the same as in (A) and (B), the number of A−B dimers
formed is the same (two of the four possible).

cognate monomer needed to complete assembly (C in this example). Configurations with a single
weak interaction thus avoid the problem of deadlock at high concentrations and achieve efficient
assembly across a wide variety of conditions (see Fig. 3 in the main text).

In the sequential case, assembly can only proceed down a single path—in our example, this is
path “1” (Figure 22C). This strategy avoids the potential for deadlock, and as such we do not see
a plateau here (Figure 21A). The fact that sequential assembly occurs more slowly than “single
weak interaction” assembly arises from the fact that the latter can take two paths concurrently,
while the former is forced to take only one. Since the association rate is assumed to be identical
for both cases, weak interaction assembly initially exhibits twice the number of productive
reactions (a fact schematized by the existence of both A−B and B − C dimers in Figure 22B vs.
only A−B dimers in Figure 22C).

We thus find that inclusion of a single weak interaction in a “concurrently” assembling trimer
provides the best of both worlds—fast assembly at low concentrations while avoiding deadlock at
high concentrations. It is important to note that our analysis here is not exhaustive, and there
may be conditions in which sequential assembly will be favored over the concurrent case. We
leave further exploration of these alternative approaches to future work.
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4.5 Non-uniform concentrations

Since each protein in a heteromeric ring will be transcribed and translated from a separate gene,
such rings have the capacity to not only demonstrate variation in affinities (as discussed above)
but also the total concentration of each subunit. Such differences could easily arise from the
inherent stochastic nature of gene expression [16], or from differences in gene regulation between
subunits in the cell. To test the potential effects of such variation, we considered the assembly
dynamics of a three-membered heteromeric ring in a situation where one subunit has a higher
total concentration than the other two.
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Figure 23: Assembly dynamics of a three-member heteromeric ring with non-uniform subunit concentrations.
The black curve represents a case where all subunits are in stoichiometric concentrations (i.e. the situation
considered extensively above and in the main text). The red curve represents a case where a single subunit
is at double the concentration of the other two, and the green curve represents a case where one subunit
is triple the concentration of the other two. As one can see, as the difference in concentrations increases,
the plateau becomes “lower” and persists longer (i.e. T99 increases dramatically). In all plots, two of the
subunits are present at 4 µM concentration, while the other varies from 4 to 12 µM. The affinities in this
case are uniform with KDs of 10−9 M, and the parameter α = 2.53 · 106 M−1 s−1.

As one can see from Figure 23, increasing the concentration of a single subunit exacerbates
deadlock, resulting in a deadlocked plateau that occurs at a lower assembly yield and that persists
longer. This occurs because the subunit that is at higher concentration (say, the “A” subunit of a
“ABC” heteromeric ring) rapidly binds to the other two subunits, forming a comparatively large
number of AB and AC dimers that must dissociate in order for assembly to proceed to
completion. These findings highlight the fact that the dynamics of assembly in this case depend
not solely on KDs (i.e. the free energy of binding) but also on subunit concentrations (which
influence the chemical potential of the bimolecular reactions in question). It is currently unclear if
either hierarchical assembly or simple affinity configurations can overcome the increased deadlock
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resulting from non-uniform concentrations. We leave complete consideration of how chemical
potential landscapes might evolve to manage differences in subunit concentration to future work.

5 Analysis of structural data

5.1 Structures for heteromeric three-membered rings

Our work strongly implies that structures that include at least one weak interaction will enjoy an
evolutionary advantage, either in terms of assembly time or steady-state yield (Fig. 3A of the
main text). We explored the solved structures of ring-like complexes in order to assess if there
was any evidence for the existence of such weak interactions in the ring-like complexes found in
living systems.

We began by assembling a set of three-membered heteromeric rings of known structure. We used
the database 3D Complex [17] as a starting point for collecting the structures, and based our
analysis on all heteromeric three-membered complexes in that database with a ring-like topology.
In order to reduce the redundancy of the data set (i.e. to avoid considering two very closely
related or identical rings as different examples of evolutionarily optimized structures), we utilized
the “QS-90” level of the 3D Complex hierarchy [17]. At QS-90, complexes with greater than 90%
sequence identity are grouped together into a single class, from which a single representative
structure is taken. Using the QS-90 level of the hierarchy allows us to ignore cases where multiple
mutant forms of the same complex, or very closely related complexes, have solved structures in
the PDB.

We curated the resulting 82 heteromeric three-rings in the database in order to remove structures
in which the biology of assembly did not match the case considered by our model. Specifically, we
removed structures in the following four classes:

1. Antibody-Antigen Complexes Antibodies consist of two polypeptide chains (Heavy and
Light) that interact extensively with each other. In many cases, both chains interact with
an antigen, thus forming a ring-like topology. Biologically, however, antibodies are
synthesized and secreted in the absence of antigen, and only then bind to the antigen in
question. Our model does not cover this case, and so we do not consider this type of
complex in our data set. It is important to note, however, that the interactions to the
antigen generally involve much smaller surface area than the Heavy-Light interaction, but
even though these structures support the conclusions of our model we cannot be certain
that the evolutionary pressures on this system are equivalent to those implied by our model.
Of the 82 ring structures in the initial dataset, 28 belonged to this class.

2. Integral Membrane Complexes The vast majority of these cases involve the
extracellular domains of dimeric membrane-bound receptors binding to monomeric
cytokines. This situation, in which two members of the complex are constrained to a
membrane surface and one can diffuse in three-dimensional space, presents a very different
set of assembly challenges compared to the model considered in this work. In addition, some
cytokine-receptor binding events induce conformational changes in the receptor that
influence receptor dimerization, an effect which is also neglected in our model. As with the
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antibody case, most of these structures contain at least one “weak” interaction, but we
nonetheless ignore them due to the fact that they do not conform to the assumptions our
model. Of the 82 ring structures in the initial dataset, 15 belonged to this class.

3. Complexes Produced through Proteolysis This class consists of cases where a subset
of the individual chains in the structure are produced when a single chain is cleaved in two.
The majority of these cases involve proteases (e.g. trypsin) complexed with protease
inhibitors. Proteases such as trypsin are synthesized and fold as a single polypeptide chain
(the zymogen). Activation of the zymogen involves a proteolytic cleavage event in which
this single chain is cut in two. This produces two polypeptide chains that are intricately
folded with one another. In these structures, the interaction between the two chains of the
protease is not formed through bimolecular association, but rather through folding as a
single chain and subsequent cleavage. This situation is clearly distinct from the assembly
dynamics considered in our models, although it is again the case that the protease-inhibitor
interactions are considerably weaker than the interaction between the two proteases (a fact
which would support our model if the data were included). Of the 82 structures in the
initial dataset, 8 belonged to this class.

4. Miscellaneous This class consisted of one structure in which binding between two of the
subunits was induced by a small molecule (FK506), and one case in which the complex
assembles around DNA. Neither case conforms to the assumptions of our model, and so
these two structures are also removed from the set.

After curating the 82 structures of heteromeric three-membered rings from 3D Complex, we
obtained 29 structures for which the biological system represented by the structure seemed to
represent a case similar to that considered in our model. Of these 29 structures, many are
enzymes (e.g. glutamine amidotransferase) and many serve regulatory functions (e.g. the complex
of the transcription factor NF-κB with its regulator IκBα). A list of all structures can be found
in a table provided as additional supplementary material.

5.2 Structures for heteromeric four-membered chains

To serve as a contrast to the case of the three-membered rings discussed above, we also
considered heteromeric four-membered chains. A heteromeric four-membered chain contains
exactly the same number of interactions as a three-membered ring, making it possible to perform
a direct comparison between the two types of structures. This comparison is particularly
informative due to the fact that optimizing assembly in the case of chains will tend to favor
uniformly strong interactions (as demonstrated by the analyses in sections 3.2.3 and 4.3.3).

To assemble this dataset we began with the 104 heteromeric four-membered chains found at the
QS-90 level of the 3D Complex hierarchy. We removed structures in the following classes from the
data set:

1. Integral membrane complexes As with the heteromeric rings discussed above, a number
of the chain structures in this data set included one or more proteins that exist as integral
membrane proteins in the cell. In general, these structures involved the extracellular
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domains of receptors (e.g. the T-cell receptor) complexed with ligands and/or other
receptors. As with the three-membered rings, we did not consider the particular
evolutionary pressures that might arise in the case of interactions involving integral
membrane proteins. Of the 104 chain structures in the initial dataset, 23 belong to this
class.

2. Biological assembly mis-annotated The 3D Complex database is constructed on the
basis of the biological assemblies included in default PDB files [17]. As has been noted
elsewhere [18,19], these complexes are sometimes distinct from the assembly considered
biologically relevant in the very manuscript in which the crystal structure at issue is
reported. In this case, if the paper reporting a particular structure, or other relevant
literature, indicated that the biologically active form of the complex was not a
four-membered chain, we removed that structure from our data set. In some cases, we found
that authors of the paper reporting the structure cited direct size-exclusion chromatography
results indicating that the biologically relevant form of the molecule was a dimer, despite
the fact that the “biological assembly” in the PDB was reported as a tetramer. Of the 104
chain structures in the initial dataset, we identified 18 for which there was strong evidence
that the biologically relevant form of the complex was not in fact a four-membered chain.

3. Antibody-antigen complexes A number of structures in the data set consisted of
antibodies binding to various antigens. As with the rings above, we removed these
structures from our data set as they represent a case of assembly quite different from that
considered here. Of the 104 chain structures in the initial dataset, 8 consisted of
antibody-antigen complexes.

4. Complexes produced through proteolysis This class consisted of protease and lectin
molecules in which at least two of the chains in the final structure are synthesized as a
single polypeptide sequence which is later cleaved to give the final, active structure. Since
two or more of the chains in these structures do not interact with one another through a
bimolecular association event, we did not include these cases in our analysis. Of the 104
chain structures in the initial dataset, 7 involved complexes in which this type of proteolytic
cleavage was involved.

5. DNA-binding complexes These structures consisted of complexes that assemble around
specific DNA sequences. Since assembly on DNA is not considered in our model, we did not
include these cases in our analysis. Of the 104 chain structures in the initial dataset, 4
involved complexes assembling on DNA.

After curating the data set into the above classes, we obtained a dataset of 44 heteromeric
four-membered chains; as discussed in section 5.3 below, 11 of these structures actually
represented four-membered rings upon further analysis. Of the remaining 33 structures, most
represent either enzymes or enzyme-inhibitor complexes. A list of these structures is provided as
an additional supplementary table.
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5.3 Calculating changes in non-polar surface area

Examining affinity distributions in rings and chains using solved protein structures involves
estimating the binary binding affinities between components of the structure. Here we focus on
measuring the change in Solvent-Accessible Non-Polar Surface Area (∆SASANP), which has been
shown to correlate with binding affinities in some studies [20,21]. We used the software package
POPS [22] to perform this calculation. We proceeded by creating three separate PDB files: file
(1) contains only the atoms (ATOM records) that belong to the residues of the first chain (say,
chain “A”), file (2) contains only the atoms that belong to the residues of the second chain (“B”),
and file (3) contains the atoms from both chains (“A + B”). Next, we calculated the non-polar
solvent-accessible surface area for each file separately using POPS. This area is marked as
“hydrophobic” in the POPS output. We then calculated ∆SASANP as the difference between the
sum of these areas for each domain separately and the area for the domains combined:

∆SASANP(A, B) = SASANP(A) + SASANP(B)− SASANP(A + B). (41)

In other words, ∆SASANP is calculated as the SASANP of file (1) plus the SASANP of file (2)
minus the SASANP of file (3). We used the definition in equation 41 to calculate ∆SASANP for
every pair of chains in the structure of interest.

For the curated three-membered heteromeric ring structures, all of the cases yielded the expected
ring-like topology when subjected to this analysis. The case with the four-membered chains was
more complex. Many of the structures in this case actually contained more than 3 interactions
(defined as ∆SASANP greater than some cutoff). Since the only way to include more than 3
unique interactions in a graph of four nodes involves creating a cycle, this analysis indicated that
a number of the structures considered as “chains” in 3D Complex actually contained rings. We

used the minimum “affinity” observed for rings (129.67 Å
2
) as a cutoff and found that 11 of the

44 curated chains actually exhibited significant ring-like structure, a fact that we confirmed
through simple visual analysis of the structure itself in each case. This analysis left 33 “true”
four-membered heteromeric chains in our data set.

It is important to note that equation 41 represents a very rough and imperfect measure of
affinity [20,21,23]. As such, we also explored using total interface area (as opposed to non-polar
area), fractional surface area (defined as the area of the interface divided by the entire SASA of
the binary complex), and the ∆G values annotated in PISA [24]. We found that these alternative
definitions of affinity were strongly correlated with ∆SASANP (R2 > 0.8 in each case), thus
yielding nearly identical results to those discussed for ∆SASANP below. Of course, all of these
definitions are imperfect [23], but in the absence of empirical data regarding affinities in this case,
the structural analysis presented here represents the only available test of our predictions.

5.4 Comparing rings and chains

As discussed above, every structure in our ring or chain data sets contains exactly three

interactions with ∆SASANP > 129.67 Å
2
. For any structure, we can thus define the largest

interface (or “Strong” interaction, denoted S), the smallest interface (or “Weak” interaction,
denoted W), and the interface in between the two (i.e. the “Medium” interaction, denoted M).
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Fig. 4A in the main text represents a summary comparison of the S and W interactions for rings
and chains, which we expand upon here.

Figure 24 shows a histogram, the kernel-smoothed density as well as a “rug” plot of the raw data
for the S interactions of both rings and chains, while Figure 25 represents the same plot for the W

interactions. In the case of S interactions, the mean ∆SASANP for rings is SR = 2099 Å
2
, while

for chains we have SC = 1631 Å
2
. To test if this difference in means is significant, we performed a

simple random permutation test with 105 replicates in the statistical package R [11]. We found
that the difference is not significant after correcting for multiple comparisons (the uncorrected

p = 0.0441). For weak interactions, we have WR = 531 Å
2

for rings and WC = 914 Å
2

for chains.
The difference in means for weak interactions was considerably more significant (p = 6 · 10−5).
From this analysis we can conclude that the strong interactions in rings are, on average, stronger
than those for chains (with the caveat of weak statistical significance), while the weak interactions
in rings are considerably weaker than the weak interactions in chains.
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Figure 24: Strong interactions in both rings and chains. (A) Here we plot the distribution of “S” affinities for
rings. The black boxes represent a histogram of the data, while the red line corresponds to a kernel-smoothed
density. The blue lines on the x-axis are a “rug” plot of the data, where each line represents the affinity
for a single ring in the data set. The rug plot is provided to give a sense for the data underlying both the
histogram and the kernel-smoothed density. (B) A plot as in panel A, but for the S affinities in chains.

It is important to note that the assembly properties of a ring or chain with a particular set of
affinities will vary strongly with total monomer concentration (see section 4.1.1). We thus also
considered the weak-to-strong interaction ratios (W/S); a plot of the ratio densities for rings and
chains can be found in Fig. 4B of the main text. Figure 26 shows this density, as well as
histograms and rug plots, for rings and chains separately. Again using a permutation test, we
found that the mean ratios for rings, (W/S)R = 0.309, is significantly smaller than that for chains
(W/S)C = 0.627 (p = 10−5). Comparison of both the absolute affinity and relative affinity
distributions reveals that the weakest interaction in rings is significantly weaker than the weakest
interaction in chains, as our assembly models would predict.
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Figure 25: Weak interactions in both rings and chains. (A) Here we plot the distribution of “W” affinities for
rings. The black boxes represent a histogram of the data, while the red line corresponds to a kernel-smoothed
density. The blue lines on the x-axis are a “rug” plot of the data, where each line represents the affinity
for a single ring in the data set. The rug plot is provided to give a sense for the data underlying both the
histogram and the kernel-smoothed density. (B) A plot as in panel A, but for the W affinities in chains.
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Figure 26: The weak-to-strong ratio for both rings and chains. (A) Here we plot the distribution of the
weak to strong ratio (W/S) for rings. The black boxes represent a histogram of the data, while the red line
corresponds to a kernel-smoothed density. The blue lines on the x-axis are a “rug” plot of the data, where
each line represents the affinity for a single ring in the data set. The rug plot is provided to give a sense for
the data underlying both the histogram and the kernel-smoothed density. (B) A plot as in panel A, but for
the W/S ratios found in chains.

Interestingly, the kernel-smoothed density estimates and the histograms for both rings and chains
demonstrate considerable bimodality (see Figure 26). For the rings, we can divide the data into
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the first peak (with (W/S)R < 0.5) and the second peak ((W/S)R > 0.5). As can be seen from
Figure 26, the majority of rings (24 of 29) belong to the first peak, and taking this peak alone we
have (W/S)R = 0.225, which is significantly smaller than the average for the entire sample. The 5
points belonging to the second peak have a much higher average, with (W/S)R = 0.712. Similarly,
we can use a ratio of 0.5 to divide the chains into two peaks, and for 11 structures in the smaller
ratio peak we have (W/S)C = 0.319 while for the 23 points in the second peak we have
(W/S)C = 0.781. As Figure 27 demonstrates, normal quantile-quantile plots for the major peaks
in both cases (the smaller-ratio peak for the rings and the larger-ratio peak for the chains) reveal
that both can be well-approximated by Gaussian distributions (the smaller peaks in both cases
contain too few data points to support conclusions regarding normality). Although we do not
have enough data to make this point conclusively, we can speculate that both ratio distributions
are the result of two combined Gaussian distributions, one with a smaller average ratio, and one
with a larger.
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Figure 27: Quantile-Quantile plots comparing the ratio distributions of rings and chains with normal distri-
butions. (A) Here we compare the quantiles of the small-ratio W/S distribution for rings (e.g. those rings
with W/S < 0.5) to the quantiles of the normal distribution. The “Sample Quantiles” on the y-axis are
taken from our data on rings, while the “Theoretical Quantiles” for the normal distribution are computed
in R. The solid black line represents a linear fit to the Q-Q data. The linear fit in this case is fairly good,
with strong statistical significance for both the slope and intercept terms (p < 2 · 10−16). Although there
are slight systematic deviations from the straight line throughout the range of quantiles, this result indicates
that the small-ratio distribution is approximately Gaussian in character. (B) In this case we compare the
quantiles of the large-ratio W/S distribution for chains (e.g. those chains with W/S > 0.5) to the quantiles
of the normal distribution. As in panel A, the “Sample Quantiles” on the y-axis are taken from our data on
chains, while the “Theoretical Quantiles” for the normal distribution are computed in R. The solid line is
again a linear fit to the Q-Q data; the fit in this case is excellent, with p < 2 · 10−16 for both the slope and
intercept terms. There is less systematic deviation from the fit in this case, indicating that the large-W/S
peak for chains can be fairly well approximated Gaussian distribution.

As can be seen from Fig. 4A in the main text, the smaller-ratio peak for the chains overlaps with
that peak for the rings, and vice versa. Using a permutation test, we found that smaller-ratio
chains had a significantly higher average than smaller-ratio rings (although the significance is
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fairly weak after correcting for multiple comparisons, with an uncorrected p = 0.0199), while the
averages for the larger-ratio chains and rings were statistically indistinguishable (p = 0.254).

We thus find that 24 of the 29 rings considered in our data set conform to our prediction that
rings will contain at least one “weak” interaction. The 5 remaining structures do not seem to
contain a weak interaction (i.e. they seem to belong to the chain distribution rather than the ring
one). These cases may represent situations in which the cell can accommodate sub-optimal
assembly efficiency, or cases in which mechanisms not considered in our model (e.g.
chaperone-mediated assembly) are involved.

5.5 Gaussian control

Although the above analysis indicates that rings and chains, on average, conform to the
expectations of our model, it is unclear to what extent our observations represent evolutionary
pressures on affinities. For instance, say we have some positive continuous random variable X
that follows an underlying probability density p. Sampling three instances of X from this
distribution will naturally result in a “largest” and “smallest” value for the sample, and the ratio
of these two numbers will always be less than 1.

We thus conducted a control to test whether we would observe W/S ratio distributions similar to
the results for rings and chains when the interactions themselves are sampled from a single
underlying distribution. We considered a simple model in which a “structure” is constructed by
sampling 3 ∆SASANP from a Gaussian distribution. We set the mean µ of the Gaussian to be the

mean of all the interactions (A = S ∪M ∪W ) in a given data set; for rings we have AR = 1255 Å
2

and for chains we have AC = 1296 Å
2
. The standard deviation σ of the Gaussian was set to the

sample standard deviation in each case: s(AR) = 966 Å
2

and s(AC) = 700 Å
2
.

Of course, ∆SASANP values cannot be negative, and indeed in section 5.3 we defined a cutoff for

considering only interactions with ∆SASANP > 129.67 Å
2

as valid. In order to mimic these

constraints, we must thus introduce a minimum affinity (129.67 Å
2
) and reject affinities below

that cutoff. If we only implement a lower bound, however, the set of sampled interactions from
the above procedure will exhibit a mean significantly different from the underlying Gaussian used
to construct the data. To prevent this from happening, we implement an upper bound such that
the z-score of this upper bound is equal to the absolute value of the z-score for the chosen
minimum (that is, zmax = −zmin). This allows us to construct a distribution of random affinities
from the underlying Gaussian with a minimum possible affinity that is nonetheless symmetric and
exhibits the defined average.

Each random structure sampled from the distribution as defined above has a S, M and W
interaction, and for each structure we calculate the W/S ratio. A “model” data set is constructed
from N such structures, where N = 29 for rings and 33 for chains to mimic the distributions we
observe in the real data. We constructed 104 such data sets (for a total of 2.9 · 105 structures in
the case of the rings) and asked what fraction of these random datasets exhibited W/S ratios
smaller than or equal to that observed for the rings and larger than or equal to that observed for
chains.

In every case, we find that this Gaussian control is unlikely to explain the data: p = 9 · 10−4 for
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rings and p < 10−4 for chains.

Fig. 4C in the main text is meant to summarize the results of this control graphically. In that
case, we have a single Gaussian distribution with an average taken to be approximately that

observed for rings and chains (µ = 1250 Å
2
). We vary the standard deviation from σ = 25 Å

2
to

2500 Å
2

and maintain a cutoff of 129.67 Å
2
. In this case, we take N = 30 for each data set and

we construct 104 data sets for each value of σ. In Figure 4C we plot the average W/S and 95%
confidence intervals for random data sets constructed this way as a function of σ/µ.

It is important to note that we have controlled here only for one type of underlying distribution;
namely a Gaussian with a particular minimum affinity cutoff. Although this control is clearly
unlikely to produce the data, one could potentially find some other single underlying distribution
of affinities that could. As Fig. 4B in the main text indicates, however, even if this is the case,
one could argue that evolution has selected parameters for this underlying distribution (e.g. µ and
σ) such that configurations with optimal assembly characteristics are likely.
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Figure 28: Relationship between the change in solvent-accessible non-polar surface area and binding free
energy. The squares in the plot represent data taken from Table 1 in reference [21]; in this case the ∆Gb
values are obtained from experimental measurements, and we determined the ∆SASANP directly from the
corresponding crystal structures using POPS [22] as described in section 5.3 above. The green line is a linear
fit to the data, which yields an R2 = 0.47.

5.6 Affinities for the interactions in the crystal structures of rings

One can use available crystal structures of interacting proteins for which affinities are known to
investigate the quantitative relationship between ∆SASANP and ∆G0

b . Using a recently-published
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data set of 20 such structures [21], we found a roughly linear relationship between the two, with
an R2 of 0.47 (see Figure 28). Although the correlation is imperfect, the linear fit allows us to
map ∆SASANP values into ∆G0

b values and thus KDs for the interactions in our data set. The
equation we obtain in this case is:

∆G0
b(A, B) = −0.015 ·∆SASANP(A, B)− 4.17

with ∆SASANP(A, B) given in Å
2

and ∆G0
b(A, B) in kcal mol−1. Assuming approximately room

temperatures (i.e. RT ≈ 0.6 kcal mol−1), the average KD for strong bonds in our rings data set is
8.0 · 10−12, and the average KD for weak bonds is 1.8 · 10−6. Interestingly, these are very close to
the values used for Figures 2A and 3B in the main text, as well as the optimum values obtained in
our analysis of heteromeric rings (Fig. 3A of the main text). As mentioned above (and as is clear
from Figure 28), ∆SASANP is only a very rough measure of actual binding affinity [20,21,23];
these results simply indicate that the KD values we use for “strong” and “weak” bonds in the text
(e.g. 10−12 and 10−6 M, respectively) are at least broadly consistent with the range of affinities
one would expect given the buried surface areas in the crystal structures of homomeric rings.
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B
The noise is the signal: information flow in single

cells and cellular populations

Authorship contribution

E. Deeds and R. Suderman proposed the relationship between single-cell noise and population-level re-

sponse; I designed and performed the experiments aimed at exploring this relationship in the context

of apoptosis. In addition I reviewed, tested, and documented the code for calculating channel capacity

(contributions on GitHub at https://github.com/ryants/EstCC/graphs/contributors). I

prepared several figures related to the experimental data and contributed to thewriting of themanuscript.

Abstract

Signal transduction networks allow cells to make decisions based on their intracellular state and infor-

mation in the environment. Cheong et al. recently demonstrated that noise significantly diminishes the
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fidelity of signaling in eukaryotic cells: themajority of the networks they examined transmitted less than 1

bit of information. It is unclear hownetworks that control critical cell fate decisions (e.g. cell division and

apoptosis) can function effectively with such low levels of information transfer. For apoptosis in human

cells, we demonstrate the existence of an inherent trade-off between the amount of information trans-

ferred in individual cells and the information available to control population-level responses; noise that

reduces information transfer to less than one bit at the single-cell level allows 3–4 bits of information to

be transmitted at the population level. For processes such as eukaryotic chemotaxis, in which single cells

are the key biological unit, we find high levels of information transmission at a single-cell level. Thus, the

low levels of information transfer observed previously are unlikely to represent an inherent physical limit.

Instead, we propose that signaling networks can exploit noise to maximize population-level information

transfer. This is particularly critical for discrete changes in cell fate (e.g. apoptosis) in which the key vari-

able is the fraction of cells engaged. Our findings provide a conceptual framework for rationalizing the

high levels of noise inmetazoan signaling networks and have important implications for the development

of drugs that target these networks in the treatment of cancer and other diseases.

Significance statement

Cells rely on signaling networks to detect changes in their environment and respond appropriately. Re-

cent evidence suggests that there are high levels of noise in eukaryotic signaling, and it is currently unclear

how cells can make critical cell fate decisions (e.g. programmed cell death) on the basis of low levels of

information about their environment. Here, we show that high noise levels are actually critical when a

system needs to control the behavior of populations of cells. In contrast, when the key biological unit is

a single cell, we show that the impact of noise on signaling is much less pronounced. Understanding the

regulation of noise will be key to developing a complete picture of information processing in cells.

Introduction

Signaling networks allow cells to sense intra- and extra-cellular concentrations of cytokines, nutrients,

ions, etc., and execute both discrete and continuous changes in cell state in response to those signals
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(Spencer et al., 2009; Chen et al., 2012; Balázsi et al., 2011; Suderman and Deeds, 2013; Rowland et al.,

2012). Apoptosis and commitment to cell division are typical of binary responses, whereas directed cell

movement and induced gene expression are typical of continuously variable responses (Chen et al., 2012;

Suderman andDeeds, 2013; Bashor et al., 2008a; Bardwell, 2004). Dysregulation of intracellular signaling

has been implicated in a wide range of diseases including cancer, chronic inflammation, neurodegenera-

tion, etc. (Sebolt-Leopold and Herrera, 2004), and developing a fundamental understanding of cellular

information processing is instrumental in developing rational strategies aimed at treating those diseases

(Rowland et al., 2012; Fallahi-Sichani et al., 2013). While signaling networks have been the subject of in-

tense experimental and theoretical study for decades, it has only recently become possible to measure the

response to signals at the level of individual cells (Spencer et al., 2009; Cheong et al., 2011; Selimkhanov

et al., 2014). These studies have revealed that signaling networks are subject to significant noise, which

manifests itself within single cells as stochastic fluctuations in the activities of signaling proteins and as

cell-to-cell variability within genetically identical cell populations (Spencer et al., 2009; Balázsi et al., 2011;

Fallahi-Sichani et al., 2013; Flusberg et al., 2013; Albeck et al., 2008; Feinerman et al., 2008; Kaern et al.,

2005; Ahrends et al., 2014; Shalek et al., 2014;Mehta et al., 2009)While the presence of high levels of noise

in human signaling networks seems ubiquitous, the ultimate physiological role of this heterogeneity re-

mains unclear.

Information theory (Shannon, 1948) provides a powerful analytical framework for quantifying the

impact of noise on the ability of a system to transmit information. Levchenko and co-workers pioneered

the application of information theory to signaling in mammalian cells (Cheong et al., 2011) with the con-

centration of an extracellular ligand (e.g., the inflammatory cytokine TNF-α) serving as the input to a

(potentially noisy) intracellular signaling network (or channel), ultimately leading to a downstream re-

sponse that can be experimentally measured (e.g. the nuclear translocation of NF-κB). The information

carried by the channel is quantified by the mutual information, I:

I(X;Y) =
∑
X

∑
Y

p(x, y)log p(x, y)
p(x), p(y) (B.1)

where X is the probability distribution of the signal and Y is the distribution of the response (Cheong
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et al., 2011; Shannon, 1948). The base of the logarithm determines the units of the mutual information:

the conventional base 2 quantifies information in “bits.” Since the value of I depends on the input dis-

tribution, the mutual information of a signaling channel represents a combination of the properties of

the signal and the intrinsic limits of the channel itself. It is thus problematic to use I as a measure for

evaluating or comparing information flow in various signaling networks, since the in vivo distribution of

signal values is rarely known. As a result, it is often more informative to focus on the maximum possible

information that a channel can carry, or the channel capacity, C:

C = sup
pX(x)

I(X;Y) (B.2)

where the supremum (the least upper bound) is evaluated over all possible choices of the probability dis-

tribution of the input. The channel capacity is an inherent feature of the channel: the larger the value,

the more information that a channel can theoretically transmit (Cheong et al., 2011; Shannon, 1948). In

the case of cellular responses toTNF and other cytokines, Cheong et al. found that the channel capacity is

generally less than 1 bit for molecular responses at the single-cell level (these values are summarized in Ta-

ble B.1, entries 1-4, 9) (Cheong et al., 2011; Bao et al., 2010; Cohen-Saidon et al., 2009; Coppey et al., 2008).

Since the number of distinct signal values that can be resolved is 2C, the implication is that many intracel-

lular signaling networks cannot reliably distinguish between the presence or absence of TNF, EGF, and

other signaling molecules (C < 1 bit, Table B.1) (Cheong et al., 2011). More recent work has focused on

characterizing various strategies that cells might employ to achieve higher levels of information transfer.

For instance, Lee et al. demonstrated that mechanisms such as fold-change detection (in which cells are

sensitive to the ratio between a steady-state and induced signal) decrease the impact of noise on the propa-

gation of TNF-induced signals (Lee et al., 2014). As described below, however, we found that the channel

capacity between TNF concentration and the downstream transcriptional response remains below 1 bit

despite the use of fold-change detection in this system (entry 5, Table B.1). Wollman and co-workers re-

cently demonstrated that using multiple time points from the trajectory of a molecular response (e.g.,

Erk activation over time) can significantly increase channel capacities. While this dynamic approach to

information flow clearly can increase C, it is currently unclear how cells might actually implement this
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kind of mechanism at the molecular level Selimkhanov et al., 2014.

Signal (molecular) Response (molecular) C (bits) Data Calculation
1. TNF NF-κB 0.92 ± 0.01 Cheong et al. Cheong et al.
2. PDGF NF-κB 0.67 ± 0.01 Cheong et al. Cheong et al.
3. EGF Erk (fold-change) 0.60 ± 0.03 Cohen-Saidon et al. Cheong et al.
4. UDP Peak Ca2+ 1.22 ± 0.03 Bao et al. Cheong et al.
5. TNF A20 transcripts 0.62± 0.08 Lee et al. this work

6. TRAIL Casp-8 activity 0.66± 0.02 this work this work
7. TRAIL Casp-3 activity 0.33 ± 0.01 this work this work

8. α-factor pFUS1-GFP 2.26 ± 0.05 Bashor et al. this work

Signal (position) Response (molecular) C (bits) Data Calculation
9. Embryo perimeter Phosphorylated Erk 1.61 ± 0.05 Copey et al. Cheong et al.

Signal (position) Response (motion) C (bits) Data Calculation
10. Bacterium neutrophil motion 2.14 ± 0.22 this work

11. cAMP Dictyosteliummotion 2.24 ± 0.07 Firtel Lab this work

Signal (molecular) Response (population) C (bits) Data Calculation
12. TRAIL % dead (HeLa cells) 3.46 ± 0.03 this work this work
13. TRAIL % dead (MCF10A cells) 3.36 ± 0.03 this work this work

Table B.1: Calculated channel capacities for experimental data. The channel capacity for population-level response in HeLa cells was

calculated using 1000 cells per TRAIL concentration and all population-level channel capacities were calculated using 100 indepen-

dent populations.

One limitation of previous work is the focus onmeasuring the activity of signaling intermediates, such

as nuclear localization of the NF-κB transcription factor, rather than a cellular phenotype as an output

(Cheong et al., 2011; Lee et al., 2014). This makes it difficult to interpret the functional significance of

low channel capacities. We therefore focused our analysis on an unambiguous terminal phenotype: life

or death as regulated by TNF-Related Apoptosis-Inducing Ligand (TRAIL). TRAIL induces apoptosis

by binding to cell surface receptors, initiating formation of death-inducing signaling complexes or DISCs.

These complexes then activate initiator caspases (ICs), starting a sequence of biochemical events resulting

in mitochondrial outer membrane permeabilization (MOMP). The release of numerous mitochondrial

proteins into the cytosol and subsequent formation of the apoptosome then promotes activation of the

effector caspases (ECs), ultimately leading to cell death (Figure B.1A). Dramatic cell-to-cell variability has
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been observed in the responses of clonal cell cultures to TRAIL (and other death ligands): whereas a

subset of cells dies within 2-8 hr of ligand exposure, others survive indefinitely. When these survivors are

re-assayed for TRAIL sensitivity following outgrowth, the same fractional killing is observed, showing

that variability is a stable property of the cell population. Molecular studies have shown that this vari-

ability arises from extrinsic noise in receptor-to-caspase signaling networks (Spencer et al., 2009; Flusberg

et al., 2013; Albeck et al., 2008).

We found that the channel capacity betweenTRAILdose and ICorECactivity (measured at the single-

cell level) is significantly less than 1 bit, similar to other molecular responses to cytokine signals (Table

B.1, entries 6 and 7). Interestingly, however, we found that the channel capacity between TRAIL dose

and the fraction of cells that die at that dose is much higher, around 3-4 bits. Based on these findings,

we developed a simple mathematical model that allowed us to characterize the fundamental trade-off

between the amount of information individual cells can have about their environment and the amount of

information that can be used to control decision-making at the population level. We also demonstrated

that the low channel capacities generally observed for single-cell responses are not a result of inherent

biophysical limitations: by analyzing data on eukaryotic chemotaxis and mating for yeast cells, we found

that some signaling networks are capable of transmitting well over 2 bits of information to individual

cells. Ultimately, our work suggests that noise in cell signaling is likely highly regulated. When the key

physiological output is the behavior of a single cell (as in chemotaxis ormating), noise is likely suppressed

(Selimkhanov et al., 2014; Lee et al., 2014) to enable high levels of information transfer to those cells.

When the key physiological output is the fraction of cells in a tissue or population that undertake a certain

decision (e.g. commitment to apoptosis or cell division), noise is likely exploited so that information can

be transferred at the population level.

Results

Individual cells responding to TRAIL exhibit a low channel capacity

Tomeasure the channel capacity of the extrinsic apoptosis signaling cascade (FigureB.1A),HeLa cellswere

treated with TRAIL for 11 hr over a range of ligand concentrations from sub- to super-physiological, and
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Figure B.1: Cell-to-cell variability in response to a range of TRAIL doses. (A) TRAIL activates the extrinsic apoptosis signaling path-

way through activation of the initiator caspase (IC) Casp-8 via death-inducing signaling complexes (DISCs). Active Casp-8 then acti-

vates the effector caspase (EC) Casp-3, via twomechanisms: direct cleavage andmitochondrial outer membrane permeabilization or

MOMP, which induces formation of the apoptosome, another activator of Casp-3 (13). (B)Measurement of cleaved EC and IC sub-

strates by flow cytometry (13) show that HeLa cells have a highly variable response to TRAIL across a wide range of doses (n = 60,000

cells per TRAIL dose). The solid line is theminimum density in the bimodal EC response (~2.8 in log10 units) and acts as a threshold for

apoptosis, whereas the dashed linemarks the average IC response for non-apoptotic cells. (C &D)Weused kernel density estimators

in the R statistical software package (R: A Language and Environment for Statistical Computing 2010) to estimate TRAIL-dependent

response distributions for IC (C) and EC (D) activity. The fraction of EC activity above the threshold is proportional to the number of

apoptotic cells (13) indicating that approximately 50% of cells survive themaximumTRAIL dose.
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molecular responses in single cells were measured by flow cytometry Albeck et al., 2008. The level of

cleaved caspase-3 (cC3) served as a measure of the time-integrated activity of receptor-proximal ICs and

cleaved PARP (cPARP) served as a measure of downstream EC activity (Figure B.1A). Previous studies

have shown that TRAIL exposure results in a dose-dependent increase in IC activity that varies signifi-

cantly from cell-to-cell; in any single cell, when IC activity exceeds a threshold set by anti-apoptotic Bcl-2

proteins, ECs are activated and the cell proceeds inexorably todeath (Figures B.1B-D) (Spencer et al., 2009;

Albeck et al., 2008).

While Eqs. B.1 & B.2 seem concise at first glance, estimation of the mutual information and chan-

nel capacity is a nontrivial challenge, and numerous approaches have been proposed and implemented

(Steuer et al., 2002; Paninski, 2006; Kraskov et al., 2004). In order to facilitate comparison between our

calculations and those performed by Cheong et al., we designed a software package to estimate mutual

information based on the binning procedure they applied in their work (seeMaterials andMethods, and

the Supporting Information for further details) (Cheong et al., 2011; Nemenman et al., 2004). This soft-

ware is freely available as an open-source project (https://github.com/ryants/EstCC). Using this

software and the distributions of IC and EC activity in single cells, we calculated a channel capacity be-

tween TRAIL dose and IC activity of C ∼ 0.66 bits and between TRAIL and EC activity of C ∼ 0.33

bits (entries 6 and 7, Table B.1). We observed similar values for TRAIL to IC channel capacity in surviv-

ing cells (i.e. those with low cPARP levels, see Supporting Information). As an additional control, we

calculated the channel capacity between IC activity and both EC activity and cell fate obtaining a C of

1.23 and 0.85 bits, respectively (see Supporting Information). This confirms that measured IC activity is a

relevant intermediate signal for extrinsic apoptosis (since it contains almost all the information necessary

to specify the binary cell-fate decision), and that noise accumulates progressively through the apoptosis

signaling pathway (Spencer et al., 2009). High levels of noise and low levels of information transfer are

thus a feature of the TRAIL network across multiple biologically relevant measures.
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Populations of cells responding to TRAIL exhibit high channel capacity

However, whenwe examined the channel capacity between TRAIL dose and phenotypic response at the

population level we obtained a very different result. The combination of noise and a threshold can allow

a fraction of cells in a population to make a discrete decision in response to a signal (Spencer et al., 2009;

Feinerman et al., 2008; Kaern et al., 2005; Ahrends et al., 2014; Shalek et al., 2014; Miller et al., 2012). For

either of two cell types (transformed HeLa and non-transformed MCF10a cells), we found that the frac-

tion of cells surviving exposure to TRAIL gradually decreased as the concentration of ligand increased

over a 103-fold range (Figure B.2). The fraction of cells dying at any given TRAIL dose in both experi-

ments showed comparatively little variance between replicate experiments (Figure B.2). As a result of this

relatively low variability, the channel capacity between TRAIL dose and the fraction of cells undergoing

apoptosis was much higher than what we observed for the molecular response in single cells, between 3.4

and 4 bits depending on the population size (entries 12 and 13 in Table B.1, and Figure B.3 below). Since

the variability between dose-response replicates is at least partly technical in nature (e.g., due to handling

of the cells during the experiment), these values represent lower bound estimates of the true biological

channel capacity.

Understanding the trade off between single-cell and population-level information

transfer

To better understand how single-cell noise contributes to high channel capacity at a population level

(Balázsi et al., 2011; Feinerman et al., 2008; Kaern et al., 2005; Ahrends et al., 2014; Shalek et al., 2014), we

created a simplified model for TRAIL signaling in which signal (S) and response (R) are related by a Hill

function modified to account for noise:

R = (Rmax − Rmin) ·
Sn

Sn + Kn + Rmin + ε (B.3)

where K is the concentration of an input ligand that results in a half-maximal response, n is the Hill

exponent (a measure of dose-response ultrasensitivity), Rmin and Rmax represent the range of average re-
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Figure B.2: Population-level dose-response relationship for TRAIL-mediated apoptosis (A)Weused the threshold described in Fig. 1B

tomap data fromHeLa cells to fractional survival at varying TRAIL doses. We recorded amaximal effect at [TRAIL] = 1000 ng/mL (in-

dicated by the dashed line); higher doses of TRAIL lead to less fractional killing in a “ligand squelching” effect that we have consistently

observed for this system. Since the channel capacity represents a supremum over all possible probability distributions of input signals,

we removed the final point ([TRAIL] = 2000 ng/mL) from our analysis without loss of generality. Error bars indicate sample standard

deviation across 3 replicates of 20,000 cells each. (B) Fraction ofMCF10A cells surviving TRAIL treatment as assayed bymethylene

blue staining (see supplementary online text) (12) show a graded response similar to that of the HeLa population in (A). Calculation of

the channel capacity based on this data yielded C ~ 3.4 bits, similar to the value for the HeLa cells (Table B.1).
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sponses, and ε is a noise term sampled from a Gaussian distribution with mean μ = 0 and variable

standard deviation, σ (Albeck et al., 2008). Estimation of the single-cell channel capacity in this model

involves generation of a dose-response data set with N independent cells per M distinct concentrations

of input signal, resulting in N × M ordered (S,R) pairs. By varying σ, we created dose-response data

for specified levels of noise (Figure B.3A) (Albeck et al., 2008). To simulate responses at the population

level (e.g. the fraction dead), onemust map individual cell responses to a discrete phenotype. Ourmodel

therefore assumes that individual cells exhibit a phenotypic response (e.g. cell death) when R exceeds a

threshold value, (analogous to the threshold set by anti-apoptotic Bcl-2 proteins in apoptosis) (Albeck et

al., 2008). At any given signal value we thus have the distribution of R values in a simulated population,

and also the fraction of that simulated population that exhibit the phenotypic response.

For simulated populations ofN = 102 to 104 cells, the model revealed a striking trade-off between the

channel capacity for single cells and for cell populations. When noise is low, the response of individual

cells is essentially deterministic, corresponding to a step-like change in the fraction of cells that die as S

increases (Figures B.3A and B, blue). At higher levels of noise, the response of individual cells obviously

becomesmore variable, but this corresponds to a gradual decrease in the fraction of “surviving” cells (Fig-

ures B.3A and B, black and red) (Spencer et al., 2009; Feinerman et al., 2008; Kaern et al., 2005; Ahrends

et al., 2014; Shalek et al., 2014; Miller et al., 2012). As observed in the experimental data (Figure B.2), the

fraction of cells that respond at any given value of S displays relatively low variance between populations

of the same size (corresponding to relatively small error bars on the red and black curves in Figure B.3B).

Lownoise thus leads to high channel capacities between S andRmeasured at the single-cell level (over 5

bits), but very low channel capacities between S and the fraction of cells that die (∼ 1 bit, Figure B.3C). As

the level of noise increases, channel capacity at the single-cell level drops rapidly but at the population level

it rises significantly, before falling again (Figure B.3C). The level of noise that optimizes population-level

channel capacity varies with the number of cells. For example, with N = 102 a maximum of C ∼ 2.75

bits is achieved with σ ∼ 1; with 104 cells C ∼ 4 with σ ∼ 2.5 (Figure B.3D). It should be noted that the

precise positionof thismaximumdependson the spacingof the signal valuesS: since lower values of sigma

correspond to a narrower population-level dose response (Figure B.3B), re-sampling S values more finely
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Figure B.3: Relationship between single cell and population-level channel capacity. (A) Single-cell dose-response behavior in the initial

model described in Eq. B.3. Themean response and sample standard deviation of 1000 independent simulated “cells” is shown for

various noise values, relative to a cell death threshold (dashed line). (B) Population dose-response behavior from P = 100 independent

populations with N = 1000 cells per signal each. Individual cells’ responsemap to either death or survival according to the threshold

in (A); points correspond to themean and sample standard deviation of the fraction of surviving cells. (C)A trade-off exists between

single-cell and population-level channel capacity. Increasing noise decreases information transmission in single cells and simultane-

ously increases the population-level channel capacity up to an optimal noise value. (D)Channel capacity in ourmodel correlates with

population size in the presence of noise (green, black, red, blue). Additionally, the level of noise needed tomaximize channel capacity

changes as the population size grows, from low values (σ ~ 1 for N = 100) to higher values (σ ~ 2.5-5 for N = 10,000). Experimental

population-level channel capacities (orange) were calculated by taking 100 random subsamples from the set of 60,000HeLa cells for a

range of population sizes.
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within the transition region tends to decrease the value of noise that maximizes C (see the Supporting

Information). However, so long as there is someminimumspacing between the discrete S values towhich

a population can be exposed, or any error in generating precise values of S (e.g., experimental error in

preparing a precise TRAIL concentration), the maximum observed in Figure B.3D occurs at standard

deviations significantly larger than 0.

To examine the effect of population size in our experimental data, we randomly sampled subpopula-

tions of HeLa cells from the total of 60,000 per TRAIL dose that we measured. This revealed a similar

dependence of population-level information transfer on population size in our experimental data (Figure

B.3D, orange). Taken together, our work demonstrates that the combination of a noisy signaling net-

work with concomitantly low information transfer (Figure B.1 and Table B.1) and a threshold in initiator

caspase activity (Albeck et al., 2008) leads to robust information transfer at the level of cell populations

(Figures B.2 and B.3).

Low channel capacities observed previously likely do not represent intrinsic bio-

physical limits

Although noise may ultimately support information transfer to cell populations, it is unclear if the phe-

nomenon discussed above represents cells simply taking advantage of the inherent noise in signaling sys-

tems, or if noise can be tuned up and down to favor fidelity in either single cells or population-level

decisions. To explore this latter possibility, we considered two cases in which individual cells (rather than

populations) must respond accurately to environmental stimuli. During S. cerevisiae mating, haploid a

and α cells must determine if a suitable mating partner is sufficiently close for conjugation to be success-

ful. Cells sense the local concentration of the mating pheromone α factor via a G protein-coupled cell

surface receptor and a downstreamMAP kinase signaling cascade; when a suitable partner is available for

conjugation they reorient their cytoskeletons and initiate a complex transcriptional program (Suderman

and Deeds, 2013; Bashor et al., 2008b; Bardwell, 2004). Since the decision to mate results in cell-cycle

arrest, we would expect there would be an evolutionary pressure for individual yeast cells to have a rel-

atively high level of information about the availability of mating partners in their environment. Using
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the single-cell data from Bashor et al. (6), we calculated C ∼ 2.26 bits between α-factor dose and the

transcriptional output of the signaling network, measured by a fluorescent reporter (entry 8, Table B.1).

This particular network thus demonstrates a much higher level of fidelity than has been observed for

molecular responses to cytokines in metazoan systems (Table B.1).

Another example of a situation in which individual cells are the key biological actors is eukaryotic

chemotaxis. We therefore analyzed a classic movie of a human neutrophil “hunting” a bacterial cell, and

a movie of a singleDictyostelium cell responding to cAMP emanating from a micropipette (both movies

are available as supplemental files) (Janetopoulos and Firtel, 2008). Because migrating cells are polar, it

is possible to define a cell-based coordinate system using standard tracking software (CellTrack) (Sacan et

al., 2008). Like others working on distributions of directional movement (Burov et al., 2013), we defined

the input as the angle between the chemoattractant (bacterium or micropipette) and the cell axis and the

output as the angle of the cell’s subsequent motion (Figure B.4A, Materials and Methods). For both the

neutrophil (a representative trajectory is shown in Figure B.4B) and Dictyostelium we computed C > 2

bits (entries 10 and 11, Table B.1), which is almost certainly a lower bound given that we are simplifying

a 3D problem as a 2D search (see Discussion). From these data we conclude that signaling networks in

single cells can encode more than 2 bits of information (possibly much more) demonstrating that previ-

ous observations of C ∼ 1 are likely not due to the fact that the inherent noise in biochemical reaction

networks limits channel capacities to below 1 bit.

Discussion

Our findings touch on two distinct and complementary aspects of information transfer in signal trans-

duction: single-cell and population-level information processing. In the case of regulatory networks that

control apoptosis, the keyphysiological variable is the fractionof cells responding at a givendose (Ahrends

et al., 2014; Miller et al., 2012). In this case, low channel capacity at a single-cell level (C < 1) is a corollary

of high capacity at a population level (C ∼ 3 to 4). Said another way, achieving effective control over

fractional responses requires a significant heterogeneity at the single-cell level (Spencer et al., 2009; Chen

et al., 2012; Feinerman et al., 2008; Kaern et al., 2005; Ahrends et al., 2014; Shalek et al., 2014; Miller et al.,
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Figure B.4: Schematic for spatial channel capacity calculation. (A)A representative trajectory from the neutrophil movie. Points

are centers of mass for the bacterium (signal source, red) and neutrophil (motile cell, black). The bold, outlined areas show the cells’

perimeters in the trajectory’s first frame. Clearly seen here is the bacterium’s stochastic randomwalk-likemotion and the neutrophil’s

smoother tracking of the resulting gradient. (B)Black circles represent themotile cell and red circles represent the signal source (ei-

ther amicropipette or bacterium). Since cells do not instantaneously detect or respond to extracellular stimuli, filled, solid, and dashed

circles represent themotile cell and signal source at initial (t), signal-delayed (t +Δt1), and response-delayed (t +Δt1 +Δt2) time,
respectively. We can then calculate themutual information between the signal (θ1) and response (θ2) angles.

251



2012), and thus low channel capacities when the responses of those cells are assayed at a single-cell level.

Since many cytokines regulate population-level behaviors (e.g. control over neural progenitor cell pro-

liferation and differentiation by EGF/NGF (Chen et al., 2012)), it is perhaps not surprising that channel

capacities less than one bit have been observed in those cases (Table B.1).

In contrasting cases where individual cellsmust precisely resolve signals tomake decisions in a continu-

ous response space (e.g. finding amating partner, following gradients or hunting pathogens) we find that

the single-cell channel capacity is generally significantly higher than has hitherto been observed (C ∼ 2,

Table B.1) (Figure B.4). As mentioned above, we expect that this value is likely a lower bound, since our

chemotaxis data is essentially a 2-dimensional projection of a process that often occurs in 3-dimensional

space. Additionally, the data for the Dictyostelium calculation (C ∼ 2.24, Table B.1, entry 11) exhibits

tight distributions around approximately 6 input angles, producing amaximum input entropy (and thus

an upper limit on channel capacity) of slightly less than log2(6) = 2.6 bits. Since the estimated channel

capacity is so close to this limit (>85%), we suspect that the calculated spatial channel capacity in this case

would increase upon further sampling of signaling space (i.e. the relative angle between the source of the

signal and the cell).

The clear conclusion from these findings is that low channel capacity at a single cell level (C < 1) does

not reflect an inherent limit in the biochemistry of signal transduction, but rather a natural trade-off

between the knowledge that individual cells have about their environment and the ability of multicellu-

lar organisms to control responses reliably at the population level. With respect to noise levels in these

systems, two nonexclusive possibilities exist. The first is that networks that control cellular populations

simply exploit noise that arises from stochastic fluctuations in transcription, protein synthesis and related

processes whereas as chemotactic networks have evolved to suppress it. The second is that some signaling

networks have actually evolved higher levels of noise than the underlying biophysics dictates (Shahrezaei

and Swain, 2008; Friedman et al., 2006; Cai et al., 2006; Kepler and Elston, 2001). In either case, the phys-

iological importance of noise may explain why drugs that target cellular decision networks have difficulty

eliciting complete population-level responses (Fallahi-Sichani et al., 2013). Understanding and ultimately

exploiting biological noise is likely to be as important for therapy as it is for metazoan signaling.
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Materials and Methods

Experimental methods

HeLa cells weremaintained inDMEMmedium (Corning 10-013-CV)with 10% fetal bovine serum and 1%

penicillin/streptomycin solution (Life Technologies 15140-122). For TRAIL dose-response assays, HeLa

cells were plated at a density of 250k cells/well in 12-well plates (Sigma SIAL0513), allowed to adhere

overnight, and treatedwith varyingdoses of SuperKillerTRAIL (AxxoraALX-201-115) for 11 hours. Three

replicate wells were used for each TRAIL dose to establish the technical variability of the assay. After

treatment, medium containing dead cells was transferred to flow cytometry tubes (BD Falcon 352235)

containing 2ml FACSbuffer (PBS+ 10% fetal bovine serum); cells remaining in thewellswere removedby

trypsinization, added to the corresponding tubes, pelletedby centrifugation and fixed in4%paraformalde-

hyde for 30 minutes. After fixation cells were washed twice in PBS and permeabilized in 100% methanol

overnight at -20C. Cells were stained with primary antibodies to cleaved caspase 3 (rabbit anti-cleaved

caspase 3, BD 559565) and cleaved PARP (mouse anti-cleaved PARP, BD 552596) 1:250 in FACS buffer

(PBS + 0.1% Tween-20) for 1 hour at 25C. Cells were washed twice in PBS-T, then treated with secondary

antibodies: Alexa-488 donkey anti-rabbit IgG (Life Technologies A-21206) and Alexa-594 donkey anti-

mouse IgG (Life Technologies A21203), 1:500 in FACS buffer for 1 hr at 25C. Cells were washed in PBS-T,

resuspended in PBS, and counted on a flow cytometer (BD LSRII), with 20,000 cells analyzed per exper-

imental replicate.

MCF10A cells were obtained from J. Brugge (Harvard Medical School, Boston, MA) and cultured

as described (Debnath et al., 2003). For TRAIL dose response assays, MCF10A cells were plated in 96-

well plates (Corning 353072) and treated with varying doses of SuperKiller TRAIL for 11 hours. After

treatment the cells were washed with PBS and the density of viable cells was assayed by methylene blue

staining as described previously (Flusberg et al., 2013)
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Calculating mutual information

The code used to calculate the channel capacity was based primarily on the description of mutual in-

formation estimation in Cheong et al.’s supplementary texts (Cheong et al., 2011) but was modified in

a few ways. Instead of calculating the average mutual information of the “plateau” region of bins, we

take the maximum mutual information such that at least one mutual information estimate from 10 ran-

domized data sets includes the value 0.0 in its 95% confidence interval about the mean. The parameters

used in our jackknife sampling procedure were also slightly different for our linear function estimation

as we implemented a minimum subsampling of 80% of the data instead of the 60% used by Cheong

et al. (Cheong et al., 2011). We used this method for all mutual information calculations performed

in this work in order to ensure accurate comparison between values. The source code can be found at

http://github.com/ryants/EstCC and a complete description of the estimation procedure can be

found in the Supporting Information.

Model construction

All calculations involving the model seen in Eq. B.3 were performed with the following (arbitrarily cho-

sen) parameters: K = 10, n = 6, Rmax = 30, and Rmin = 20. Our range of 20 signal values was chosen

such that the minimum and maximum response values in our data set were 10% above and 10% below

Rmin and Rmax, respectively, and the remaining 18 values were evenly distributed in between. In this way,

theHill coefficient governing the slope (or ultrasensitivity) of the response, and the sampled signal space,

minimally impacts the channel capacity calculation (see Supporting Information). The threshold value

was chosen so that half of the signal values produce an average response below the threshold and half

produce an average response above the threshold. In the absence of noise, this selection would result in a

channel capacity of 1 bit.

Spatial channel capacity calculation: From the 2D data provided by the CellTrack program, we cal-

culated the mutual information between the initial angle created from the motile cell (θ1) and the signal

source and the resulting angle of motion of the motile cell (θ2) as mentioned in the main text (Figure

B.4). Since information transmission does not occur instantaneously, we introduced two time-delay fac-

254

http://github.com/ryants/EstCC


tors: Δt1, which is the time necessary for the motile cell to detect the signal, and Δt2, which is the time

required for the neutrophil to respond to extracellular information. We calculated C(θ1, θ2) for a range

of (Δt1,Δt2) pairs and reported the maximal value in Table B.1 (values for other sets of time parameters

and other calculation methods are recorded in the Supporting Information).
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1 Information Theory Calculations

1.1 Mutual Information

The mutual information between two random variables representing a signal, S, and a response,
R, is defined as:

I(S;R) =

∫
S

∫
R
p(s, r) log

p(s, r)

p(s)p(r)
dsdr,

where S is a random variable representing the input signal, R a random variable representing the
response, p(s, r) is the joint probability distribution for some combination of s and r values, and
p(s) and p(r) are the corresponding marginal distributions (1). One of the major difficulties in
calculating this quantity from experimental data is the fact that the continuous probability
density functions defined above must be estimated on the basis of an inherently discrete data set.
As a result, a number of approaches have been developed to obtain unbiased estimates of the
mutual information with varying degrees of accuracy (2).

In order to facilitate comparison with earlier results, we employed the same strategy used by
Cheong et al. (3). This strategy has two main components. First, one defines a set number of
“bins” in both the signal values s and response values r. In cases where one is measuring the
molecular response of individual cells to a given signal (e.g. nuclear localization of NF-κB upon
treatment with TNF-α, (3)), there are a small number of ligand concentrations used to treat the
cells, resulting in a natural discretization of the S variable and a total of SB bins of signal values.
One defines a number of bins for the response (RB), and uses these bins to estimate the
probability of observing some response bin given some signal bin (i.e. p(r|s)). A linear
extrapolation procedure is then used to estimate the mutual information one would obtain if
there were an infinite amount of data in the data set. This extrapolation procedure is described in
greater detail in section 1.1.2 below.

One issue with this approach, however, is that the number of bins into which the signal and
response values should be divided is not well-defined; using a larger number of bins generally
increases the estimated amount of information (3). To combat the potential for overestimation of
the mutual information, the second phase of the procedure involves varying the total number of
bins in the response variable (and, when appropriate, in the signal value as well) and estimating I
for both the experimental data and a set of randomized replicates of the data. This allows one to
choose a bin size that maximizes I for the real data while still estimating 0 information for the
randomized versions. This element of the procedure is detailed in section 1.1.3. Estimates of the
mutual information based on this approach can subsequently be used to calculate the channel
capacity by finding the input distribution that maximizes I (1) (section 1.2).

1.1.1 Calculating the mutual information

To calculate the mutual information from our finite data sets, we first created a “contingency
table” K based on the data: the rows of this matrix represent the various signal bins, and the
columns are the various response bins. Each entry in the matrix is the number of observations
from the data that correspond to that particular signal-response pair. The contingency table for a
particular experiment might look something like this:
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K =


r1 r2 r3 r4 r5

s1 6 1 0 0 0
s2 0 3 4 0 0
s3 0 1 2 4 0
s4 0 0 0 2 5


Note that the above table is meant only as an example, and does not contain actual data. One
can use the contingency table to calculate the mutual information in terms of the marginal and
conditional entropies:

I(S;R) = H(S)−H(S|R)

I(S;R) = −
SB∑
i

p(si) log p(si)−
SB∑
i

RB∑
j

p(si, rj) log
p(rj)

p(si, rj)

where i ranges over the signal bins and j over the response bins in the contingency table (recall
that SB and RB are the total number of signal and response bins, respectively). Since each entry
in the contingency table can be naturally considered a conditional probability, it is helpful to
rewrite this equation as:

I(S;R) = −
SB∑
i

p(si) log p(si) +

RB∑
j

p(rj)

SB∑
i

p(rj |si) log p(rj |si).

We can then calculate the frequencies from the contingency table entries and substitute these
values into the equation. We define NT as the sum over all entries in the table (i.e. the total
number of observations). Since each entry of the matrix, kij , is the number of instances of signal i
that resulted in response j, we can define the total number of observations corresponding to a
given signal bin i as ks,i ≡

∑RB
j kij . Similarly, we can define the total number of times any

particular response bin j was observed as kr,j ≡
∑SB

i kij . Given these definitions, we can calculate
the mutual information using the following equation:

I(S;R) = −
SB∑
i

ks,i
NT

log
ks,i
NT

+

RB∑
j

kr,j
NT

SB∑
i

kij
NT

log
kij
NT

. (1)

Equation 1 is used whenever a particular value of I is calculated in the estimation procedure
described below (2; 3).

1.1.2 Removing bias due to finite sample size

Although it is straightforward to use equation 1 to calculate the mutual information, the fact that
there are a finite number of data points in the contingency table (NT ) can introduce biases into
the calculation. To estimate this bias, one can create a smaller data set with N ′T points
(N ′T < NT ) and calculate I. As has been observed previously (3), as N ′T decreases, bootstrap
replicates of the data generate higher values of I. This results in a roughly linear decrease in I as
the inverse sample size (1/N ′T ) decreases (Figure S1).
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To correct for this bias, we used the linear extrapolation procedure employed in Cheong et al. and
other previous studies (3; 4). We chose a range of N ′T values from 80 to 97.5% of the original
data, in increments of 2.5%. For each value of N ′T we generated 20 bootstrap replicates, sampling
a total of N ′T observations with equal probability from the original data set. We used this
randomly subsampled data to generate a new contingency table, and using equation 1 we
calculated the average of I across the 20 replicates. We then performed a linear regression of the I
vs. 1/N ′T relationship (e.g. the straight lines in Figure S1). The y-intercept of these lines
represents the extrapolation to an infinite data set (i.e. NT →∞ implies 1/NT → 0). All the
channel capacities calculated in this work (e.g. those reported in Table 1 of the main text) were
obtained from these y-intercepts. The errors reported for these values in Table 1, and the error
bars in all figures, represent 95% confidence intervals on the linear model’s intercept estimate.
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Figure S1: Representative linear models for estimating mutual information at infinite sample size with various
numbers of response bins. Here we use experimental data from 100 randomly sampled subpopulations of cells
where each subpopulation is composed of 1000 cells per each of 19 TRAIL concentrations. In this case we are
estimating the mutual information for the fractional quantity of apoptotic cells in response to a uniformly
distributed set of TRAIL concentrations. We then calculate the mean mutual information as a function of
inverse sample size by taking n independent subsets of the data per sample size. Shown here are the mean
values with their corresponding standard error (n = 20). Calculation of the linear model’s intercept and its
standard error provide us with an estimate of mutual information at infinite sample size for a particular
number of response bins. The data was resampled using lower percentages (60% to 95% in increments of
5%) than was mentioned in the text for visualization purposes.

1.1.3 Finding the optimal number of bins

Generating the contingency table relies on a particular discretization or binning of the data. As
mentioned above, the signal values used to generate experimental data often represent a natural
set of signal bins (e.g. Figure 1C and D of the main text). The number of response bins to
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generate, however, is not clear a priori, and the value of RB has a large impact on estimates of I.
On one extreme, if we set RB = 1, all of the signals will give the same responses, resulting in a
mutual information of 0. Alternatively, we could choose a number of bins, RB, so large that every
response bin contains exactly one response value in the contingency table:

K ′ =


r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

s1 1 1 0 1 0 0 0 0 0 0 0 0
s2 0 0 1 0 1 1 0 0 0 0 0 0
s3 0 0 0 0 0 0 1 0 1 1 0 0
s4 0 0 0 0 0 0 0 1 0 0 1 1


(where again we have used an arbitrary data set as an example). This results in a (spuriously)
high mutual information–note that, in this case, if we randomly shuffle the signal value that gives
any particular output, we will get the same mutual information:

K ′rand =


r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

s1 0 0 0 0 0 1 0 0 1 0 0 1
s2 1 1 0 0 1 0 0 0 0 0 0 0
s3 0 0 1 0 0 0 1 0 0 0 1 0
s4 0 0 0 1 0 0 0 1 0 1 0 0


Since I generally increases with an increasing RB (note the increasing intercept for the data in
Figure S1), we must find an optimal value of RB that accurately represents the mutual
information in the underlying data without artificially inflating it.

Our approach to solving this problem is broadly inspired by previous approaches, particularly
that of Cheong et al., with some slight modifications (3; 5). Given some data set, we considered a
range of RB values; this range was independently determined for each data set (see below). For
any given RB value, we generated the bins themselves (i.e. the actual range of response values in
the data that belongs to each bin) so that the total number of observations kr,j for each response
bin is (roughly) equal across all the bins under a uniform signal distribution (3; 5). We then
generated the contingency table and estimated I using the linear extrapolation procedure
explained above in section 1.1.2.

Plotting I vs. the total number of response bins (Figure S2) does indeed demonstrate that mutual
information increases essentially monotonically with increasing RB. For each value of RB, we also
generated a randomized data set where we shuffled the signal values. To do this, we chose two
points in the data set at random, say (si, rj) and (sk, rl) and swapped their signal values,
generating (sk, rj) and (si, rl); we repeated this shuffling procedure until the data was completely
randomized (3; 5). We generated 10 random replicates of this shuffled data and calculated I for
each one of them; the value of I in these randomized data sets also increases with increasing RB,
eventually generating significantly non-zero mutual information where there should be none
(Figure S2).

Cheong et al. obtained an optimal range of bin numbers for each data set via visual inspection of
plots like those in Figure S2 (3). While this is an effective approach, the large number of data sets
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Figure S2: Here we show a representative graph of mutual information (I) as a function of the number
of response bins. The data is the same from which Figure S1 is generated and each point shown here
is the y-intercept and its corresponding 95% confidence interval retrieved from the linear extrapolation
procedure outlined in section 1.1.2. In red is one of ten randomizations of the actual data set, shown in
black. If we consider only this randomization, the maximum number of bins that is eligible under our criteria
(i.e. estimated mean I - its 95% confidence interval ≤ 0 for the randomized data) is 56 which produces
I = 3.40± 0.01

and variants in our case prevented us from visually analyzing every case. We thus defined a
uniform criterion for choosing the optimal number of bins, defined as the value of RB that gives
the largest value of I, subject to the constraint that the 95% confidence interval from the
corresponding randomized data must include 0. In other words, we chose an RB that maximizes
the I in the data, but where the randomized data gives mutual information that is not
significantly greater than 0.

The range of RB values that provides this maximum depends on the total number of data points
(NT ) and on the amount of information present in the data itself; it is thus difficult to define a
uniform range of bin numbers to consider for every data set. To find a useful range of bin
numbers, we considered a range of bin numbers (say, 40 to 120). If the minimum bin number in
that set gave non-0 information for the randomized data, we extended the range of bin numbers
to smaller values. If the maximum bin number in that range had 0 information in the randomized
data sets, we expanded the range to larger numbers. The vast majority of cases we considered had
optimal values of RB below 100.

The discussion above assumes that SB is fixed at a (relatively) small number of signal values used
to generate experimental data. In some of the systems we considered, however, we needed to find
an optimal set of signal bins in addition to response bins. This was particularly true of spatial
quantities like the angle between the bacterium and the neutrophil (see section 3). In those cases,
we also defined a range of SB values, and tried all relevant (SB, RB) pairs to find a set of bin
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numbers that maximized I, subject again to the constraint that the randomized data gave I
values that were not significantly greater than 0.

1.2 Channel Capacity

As mentioned in the main text, the channel capacity is the supremum of the mutual information
over all possible signal distributions:

C = sup
pS(s)

I (S;R) .

Estimating the channel capacity thus involves using the estimate of mutual information obtained
from the procedure defined in section 1.1 to search the space of signal distributions and find the
one that maximizes I. Since the set of such distributions is obviously infinite, an exhaustive
search of all well-defined signal distributions is impossible. Following the example of Cheong et al.
(3), we implemented a grid-based search, limited to a set of unimodal and bimodal Gaussian
distributions in addition to the initial uniform distribution of signal values. We also added a series
of piece-wise functions designed to uniformly weight a subset of the total sampled signal values.
The details of this procedure are described below.

1.2.1 Unimodal signal distributions

We generated a range of unimodal signal distributions of the form:

GU (s) =
1

σ
√

2π
e−

(s−µ)2

2σ2 .

Since we can sample only a subset of possible signal distributions we limit the potential mean
values, µ, to a set of 4 evenly spaced values between the minimum and maximum signal values in
the data set (Smin and Smax, respectively):

µ ∈ {f · (Smax − Smin) + Smin} | f ∈ {0.2, 0.4, 0.6, 0.8}}.

For each µ we generate a range of σ values by calculating a maximum standard deviation:

σmax = min

(
µ− Smin

3
,
Smax − µ

3

)
.

This constrains the signal distributions so that at least 99% of the area under the distribution
falls between Smin and Smax and allows us to use a range of standard deviation values by
sampling increasing fractions of σmax:

σ ∈ {f · σmax | f ∈ {0.2, 0.4, 0.6, 0.8, 1}}.
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1.2.2 Bimodal signal distributions

We also implemented a range of bimodal signal distributions of the form:

GB (s) =
w0

σ0
√

2π
e
− (s−µ0)

2

2σ20 +
w1

σ1
√

2π
e
− (s−µ1)

2

2σ21

where w0 and w1 are weighting coefficients such that w0 ∈ {0.4, 0.5, 0.6} and w1 = 1− w0. In
order to construct these distributions we first defined a minimum difference between µ0 and µ1:

µD =
Smax − Smin

5
.

We used µD to construct a series of pairs (µ0, µ1) such that

µD + Smin ≤ µ0 < Smax

µ0 + µD ≤ µ1 < Smax

and µ0 is incremented in steps of µD. Similarly to the unimodal signal distributions, both means
µ0 and µ1 have multiple, evenly spaced standard deviations, σ0 and σ1 that are fractions of some
maximum standard deviations, σ0,max and σ1,max. These values are constrained so that these
distributions have both a local minimum between µ0 and µ1 and 99% of their area between Smin

and Smax:

σ0,max = min

(
µ1 − µ0

4
,
µ0 − Smin

3

)
σ1,max = min

(
µ1 − µ0

4
,
Smax − µ1

3

)
.

The individual σ0 and σ1 values are then:

σ0 = f · σ0,max

σ1 = f · σ1,max,

where f ∈ {0.2, 0.4, 0.6, 0.8, 1}.

1.2.3 Piece-wise signal distributions

Given a range of signal values (and thus signal bins), we generated a series of piece-wise
probability distributions for all combinations of signal bins sx and sy where the values in bin sx
are lower than those in bin sy (see next section, 1.2.4). We denote this inter-bin relationship with
common inequality operators (i.e. sx < sy). The probability of finding a signal value in a bin si
can then be determined from functions of the form:

PW (s) =


0 : si < sx
0 : si > sy

1
j−i+1 : sx <= si <= sy
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1.2.4 Weighting the data

With this set of new unimodal and bimodal signal distributions, we can determine how the
mutual information of a particular data set varies with different signal distributions in order to
estimate the channel capacity. To do this, we modified the original contingency table (constructed
assuming a uniform signal distribution) in order to recalculate the mutual information according
to each new signal distribution. Each signal bin si corresponds to a range of signal values between,
say, si,min and si,max and yields a corresponding number of observations in the contingency table,
kij for each response bin rj . For any new unimodal or bimodal signal distribution GA(s), we

calculated the new value for this entry in the contingency table k′ij =
p′(si)kij
p(si)

where

p′ (si) =

∫ si,max

si,min

GA (s) ds

is the new probability of observing some signal value si and p (si) is the original, uniform
probability of observing that signal bin si. To determine the correct signal probability from our
piece-wise weighting scheme we simply calculate

p′(si) = PW (si).

We can use this to generate a new contingency table, and calculate the relevant quantities:

N ′T =

SB∑
i

RB∑
j

k′ij , k
′
s,i =

RB∑
j

k′ij , k
′
r,j =

SB∑
i

k′ij .

The procedure produces a new contingency table that has approximately the same number of
entries as the original one, N ′T ≈ NT . For each distribution GA(s) that we considered, we used the
procedures described in section 1.1 to estimate the mutual information for that particular
distribution. The maximum mutual information over all signal distributions calculated is our
estimate of the channel capacity C. As mentioned above, the errors reported for C represent the
95% confidence interval for the intercept estimated by the linear extrapolation procedure (section
1.1.2).

2 Additional Experimental Calculations

2.1 Control calculations

As mentioned in the main text, we examined the channel capacities between the activities of the
initiator caspase (IC; cleaved caspase 3) and both the effector caspase (EC; cleaved PARP) and
terminal cellular phenotype. We found that the IC to EC channel capacity exceeded 1.2 bits with
a IC to cell fate channel capacity of approximately 0.8 bits (Table S1, entries 9 & 10). This
confirms the nature of IC as an intermediate component in the TRAIL signaling network due to
the relative increase in information when using IC as the input distribution to the channel
capacity calculation instead of TRAIL. As an addendum, these calculations also highlight the role
that upstream receptor-based signaling components play in generating noise within the network
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as enforced by the data processing inequality (6).

2.2 Population size dependence of single-cell channel capacity

Given our large data set, we investigated how channel capacity would vary for individual cells as a
function of population size; as mentioned in the main text, the population-level channel capacity
has a clear dependence on the size of the population. We expected to find that as the sample size
increases the estimators describing the response distribution will be sufficiently accurate to
prevent the need to calculate the channel capacity from the entire data set of over 1.2 million cells
(which is computationally expensive). We confirmed this empirically, upon calculation of the
single-cell channel capacity for increasing subsets of our FACS-generated data, using sample sizes
of 500, 1000, 2000, and 4000 cells per TRAIL concentration.

2.3 Dose-dependent scaling

In our data we observed that IC activity levels were substantially higher in dead than live cells,
most likely due to the variety of positive feedback mechanisms present in the caspase cascade (7).
Because this additional cleavage of caspase 3 in dead cells occurs downstream of the cell’s
commitment to apoptosis, it could be considered a consequence of the cell’s phenotypic outcome
rather than as an intermediate factor contributing to it. Since the channel capacity estimation is
time-dependent (and capturing the exact moment of cell death for every cell is technologically
infeasible), we proceeded to examine the impact that post-commitment IC activity has on our
estimates for channel capacity between TRAIL dose and IC activity level. We therefore performed
our analysis separately for live and dead cells by partitioning them into these two groups
according to the threshold effector caspase response, tEC (8); we calculated this quantity by
estimating the minimum density between the two peaks of the bimodal EC activity distribution:
log10 (tEC) = 2.85± 0.05 (9). We then plotted the dose response data to determine how response
varies with TRAIL concentration. These plots show clearly that only initiator caspase activity
scales with TRAIL dose, and it does so only among living cells (Figure S3). The channel capacity
between TRAIL and IC activity in living cells is approximately 0.67 bits (Table S1), nearly the
same as the channel capacity between TRAIL and IC activity in all cells. Mean effector caspase
activity in living and dead cells in addition to mean initiator caspase activity in dead cells does
not significantly vary for differing doses of TRAIL (Figures S3 and S4) and as a result, we did not
calculate the channel capacity for these dose-response relationships.

2.4 Resampling experimental data

In order to calculate the channel capacity for the pheromone signaling network in yeast, we
reconstructed dose-response data shown by Bashor et al. in their Figure 4D (10). In this case the
signal distribution was a set of logarithmically spaced α-factor concentrations and the
corresponding response was pFUS1 -GFP fluorescence. With this data we constructed a series of
dose-dependent Gaussian distributions defined by the mean and standard deviation of the
pFUS1 -GFP response given some α-factor concentration. From these distributions we sampled
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Figure S3: Initiator caspase activity scales with TRAIL among living cells. Shown for each TRAIL concen-
tration are the sample mean and standard deviation (n ≈ 60, 000 cells)

100 values for each of 10 α-factor concentrations in order to construct a dose-response data set
from which we could estimate the channel capacity (Figure S5). We similarly performed this
procedure for calculating the population-level channel capacity for the set of MCF10A cells shown
in Figure 3B of the main text. In this case, the mean and standard deviation for a particular
TRAIL dose refer to the number of living cells in a given population.

2.5 Other channel capacities

Table S1 lists all channel capacity calculations for experimental data that are relevant to this
work; it contains the values reported in Table 1 in the main text in addition to other calculations
performed in this work and others. The entries containing population-level channel capacities
were calculated using 100 independently sampled populations.

3 Spatial Channel Capacity

In order to calculate the spatial channel capacity between a motile cell undergoing chemotaxis
and its target that is producing some chemical gradient, we constructed signal/response pairs
from angles between the cell and its target. We used the CellTrack program developed by Sacan
et al. (15) to output text files containing frame-by-frame coordinates for the edges of the cells and
their centers of mass (COM). We used these coordinates to calculate time-dependent signal and
response angles.
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Signal (molecular) Response (molecular) C (bits) Data Calculation

1. TNF NF-κB 0.92± 0.01 (3) (3)
1.1. TNF ATF-2 0.85± 0.02 (3) (3)
1.2. TNF NF-κB & ATF-2 1.05± 0.02 (3) (3)

2. PDGF NF-κB 0.67± 0.01 (3) (3)
2.1. PDGF ATF-2 0.74± 0.01 (3) (3)
2.2. PDGF NF-κB & ATF-2 0.81± 0.02 (3) (3)

3. EGF Erk (fold-change) 0.60± 0.03 (11) (3)

4. UDP Peak Ca2+ 1.22± 0.03 (12) (3)
4.1. UDP Integrated Ca2+ 1.07± 0.02 (12) (3)

5. TNF A20 transcripts 0.62± 0.08 (13) this work

6. TRAIL Casp-8 activity 0.66± 0.02 this work this work
7. TRAIL Casp-8 activity (live cells) 0.67± 0.01 this work this work
8. TRAIL Casp-3 activity 0.33± 0.01 this work this work

9. Casp-8 activity Casp-3 activity 1.23± 0.02 this work this work
10. Casp-8 activity cell decision 0.82± 0.01 this work this work

11. α-factor pFUS1 -GFP 2.26± 0.05 (10) this work

Signal (position) Response (molecular) C (bits) Data Calculation

12. Embryo perimeter Phosphorylated Erk 1.61± 0.05 (14) (3)

Signal (position) Response (motion) C (bits) Data Calculation

13. Bacterium neutrophil motion 2.14± 0.22 this work

14. cAMP Dictyostelium motion 2.24± 0.07 Firtel Lab this work

Signal (molecular) Response (population) C (bits) Data Calculation

15. TRAIL % dead (HeLa cells) 3.46± 0.03 this work this work
16. TRAIL % dead (MCF10A cells) 3.36± 0.03 this work this work

Table S1: Channel capacities for experimental data sets
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Figure S4: Effector caspase activity is invariant with TRAIL among both living and dead cells. The data set
is identical to that in Figure S3.

3.1 Neutrophil motion

We initially analyzed the motion of a neutrophil that is “chasing” a bacterium from a classic
movie taken in the 1950s (see supplemental files, or this website). For the purposes of our
calculation, we assume that the neutrophil is in fact following a chemical gradient generated by
the bacterium. In this case, the signal corresponds to the angle, termed θ1, between the bacterium
at a particular frame in the movie, time t, and the neutrophil at another time t+ ∆t1. The
subsequent response angle, θ2, is that of neutrophil motion between time t+ ∆t1 and time
t+ ∆t1 + ∆t2. These angles then comprise the signal and response distributions used to calculate
the channel capacity of the system. A visual representation of this calculation can be seen in the
main text (Figure 4).

We calculated the signal and response angles between the neutrophil COM and bacterial COM
relative to the x-axis unit vector in the Cartesian coordinate system. This method is similar to
one outlined by Burov et al. derived to provide more directional information than mean squared
displacement for analysis of random walks (16). We employ a “windowed” data collection method;
given some starting time, t, we calculate an arbitrary signal and response angle pair, requiring
information from time points, t+ ∆t1 and t+ ∆t1 + ∆t2. In our windowed data collection, the
next pair of angles is calculated using t incremented by one frame: t = t+ 1. To confirm that the
calculated channel capacity was not an artifact of the chosen time delay values, ∆t1 and ∆t2, we
explored the nearby (∆t1,∆t2)-space and discovered that the channel capacity is relatively robust
to ∆t1 and ∆t2 as seen in Figure S6.

We also investigated other potential methods for calculating the signal angles. Our first
alternative calculation involved introducing a radius of detection, R, about the neutrophil COM.
The bacterial COM that is nearest, but outside, the circle defined by the neutrophil COM and R,
regardless of the time the bacterium occupies that position, is then chosen for the signal
angle calculation. This eliminates the need for ∆t1. Our second alternative calculation involved
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Figure S5: Resampled data from Figure 4D in Bashor et al. (10).

Calculation Parameters Channel Capacity

Initial ∆t1 = 3, ∆t2 = 9 2.14± 0.22
Radius of Detection R = 70, ∆t2 = 10 2.21± 0.27
Leading Edge ∆t2 = 1 1.99± 0.11

Table S2: Alternate angle calculation methods for spatial channel capacity estimation

determination of the distance between the neutrophil’s leading edge and the bacterial COM at
some time t. The point on the neutrophil’s edge resulting in the smallest distance was then used
for the signal angle calculation. This was done over all time points, eliminating the need for both
∆t1 and R. In both alternative calculation methods the response angles are calculated from the
neutrophil’s positions at t and t+ ∆t2, and the estimated channel capacities are seen in Table S2:

3.2 Dictyostelium motion

The next movie we analyzed is that of a Dictyostelium cell following a cAMP gradient (see
supplemental files or this website). In this movie, Dictyostelium responds to cAMP introduced by
a pipette tip which changes location periodically. Since the pipette tip remains stationary between
location shifts, we can employ our original calculation used for the neutrophil/bacterium data and
omit the ∆t1 parameter (the largest channel capacity occurs when ∆t2 = 15). This omission is
valid since θ1 is identical for a range of θ2 values (i.e. no motion in the gradient source/change in
the signal).
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Figure S6: Channel capacity as it depends on ∆t1 and ∆t2. Sampling time delay values near to those
producing the maximum channel capacity (∆t1 = 16 and ∆t2 = 3) results in similar channel capacities.

4 Simple Model

As mentioned in the main text, the initial model takes the form:

R = (Rmax −Rmin) · Sn

Sn +Kn
+Rmin + ε (2)

where the normally-distributed noise term ε ∼ N (0, σ) depends on some chosen standard
deviation, σ. The parameter values chosen for the base model (shown in Figure 3) are as
described in the Materials and Methods section of the main text: K = 10, n = 6, Rmax = 30, and
Rmin = 20. For all models discussed in the paper, the response threshold governing an individual
cell’s fate is positioned such that half of the signal values produce mean responses below the
threshold and half produce mean responses above the threshold.

4.1 Choosing signal values

We selected evenly-spaced signal values to achieve responses 10% above the minimum response
and 10% below the maximum response (the transition zone):

0.1 · (Rmax −Rmin) +Rmin ≤ R ≤ 0.9 · (Rmax −Rmin) +Rmin

Through simple algebra we show that the resulting minimum and maximum signal values, (Smin

and Smax, respectively) are:

Smin = K · n
√

1

9
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Figure S7: Single-cell channel capacity with respect to noise for a range of n values. The starred n = 6
denotes the value used in all other calculations based on this model. There is minimal difference between
models where n > 2 and even the model with n = 2 displays qualitatively similar behavior to the others.
Error bars denote 95% confidence about the intercept estimate (see section 1.1.2)

and
Smax = K · n

√
9

This prevents selection of signal values that would produce extremely high or low responses, since
sampling more of these responses relative to intermediate responses would reduce the channel
capacity.

4.2 Varying n

In order to determine the effect of our chosen n = 6 on this model’s channel capacity (both
single-cell and population-level), we varied n between 2 and 10. We see in general from Figures S7
and S8 that this variation produces minimal difference between models; qualitatively, models with
different n are nearly identical.

4.3 Channel capacity saturation with population size

As discussed in the main text, the fraction of a group of cells making a particular
signal-dependent decision is the statistic used to determine collective response for the
population-level calculation of mutual information. By calculating this statistic over a number of
replications, we effectively construct a sampling distribution for the fractional response to some
arbitrary signal. Since the standard deviation of this distribution (i.e. the standard error of the
statistic) is dependent on sample size, we observe an inverse correlation between the size of the
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Figure S8: Population-level channel capacity with respect to noise for a range of n values. Again we see little
difference between models with different n with the minor exception of n = 2. We do observe a slight shift in
the amount of noise producing maximal channel capacity, but the qualitative trends are essentially identical.
Error bars are as in Figure S7.

population and the standard error of the fractional response (Figure S9). If we restrict our data
set to those values in the increasing regime of the dose-response curve (the transition zone, see
Section 4.1), increasing the population size results in the channel capacity approaching its
theoretical maximum of C = − log2(

1
N ) bits (i.e. the entropy of the signal distribution in the

transition zone) where N is the number of signal values in the transition zone. We observe this
channel capacity saturation in Figure 3D of the main text.

4.4 Maximal fractional response

At high levels of noise, we observe another interesting feature of the population response: the
inability to effect a universal population response at arbitrarily high signal levels. In other words,
no matter how much signal is present in the environment, there will still be a fraction of cells in a
population that does not respond. This is plainly observed graphically in Figure S10; even as the
response saturates at low and high signal levels, there is sufficient noise such that a subpopulation
of cells at these signal levels fall above and below the threshold, respectively. The corresponding
population dose-response curve thus exhibits saturating, incomplete responses both at low and
high signal levels (Figure S11).
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Figure S9: Population-level dose-response curves for multiple population sizes
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Figure S10: Single cell response curve at high noise values

19

277



0 5 10 15 20
S

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
na

l r
es

po
ns

e Transition zone, σ = 10.0
Transition zone, σ = 5.0

Figure S11: Population response curve at high noise values (population size = 1000)

4.5 Population channel capacity dependence on signal spacing

As mentioned previously, we restricted sampling signal space (on the individual cell level) to the
region generating responses between 10% and 90% of the model’s maximum response, since the
majority of the information resides in this section of the single-cell dose-response curve (see
Section 4.1). However, as the noise decreases on the single-cell level, the shape of the population
dose-response curve changes, becoming more switch-like and ultimately shrinking the signal range
across which the population-level transition occurs (Figure S12). If we then engage in a similar
strategy for the population dose-response curve by sampling a fixed number of signal values
corresponding to responses between 10% and 90% of the maximal population response for a given
noise value, we can keep the population-level channel capacity constant as noise approaches 0, as
shown in Figure S12. It thus appears that generating high population-level channel capacity
requires only an exceedingly small level of noise, so long as the number of signal values sampled
remains constant across the (potentially very narrow) region over which the majority of the
transition occurs. A similar numerical experiment reveals that by simply increasing the number of
signal values sampled in the original signal range (defined by the signal values corresponding to
the single-cell transition region), the amount of noise required to reach the maximal
population-level channel capacity decreases (Figure S13). It is thus unclear why cells might have
evolved high levels of noise to control population-level responses, when these results suggest that
any non-zero level of heterogeneity would suffice.

It is important to note, however, that maintaining a high population-level channel capacity for
arbitrarily low levels of noise requires increasingly smaller spacing between individual signal
values (see Figure S12). This is problematic for two key reasons:

1. The signal (defined as a quantity of some extracellular signaling factor at a particular point
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Figure S12: By sampling evenly-spaced signal values in the population dose-response transition zone (which
varies given some level of noise in the individual cell), we observe that the population-level channel capacity
can be maintained at a constant value as noise approaches 0.

in time) is inherently discrete since these stimuli are ultimately composed of countable
molecules. As such, there is some (potentially very small) level of noise below which one
cannot maintain high population-level channel capacities, simply because one cannot achieve
a spacing between signal values smaller than adding one molecule of signal at a time.

2. The existence of variability in the signal itself interferes with very small signal spacing in
physically realistic systems.

Regarding the (perhaps more biologically relevant) second issue, consider an experimentalist
exposing multiple populations of cells to some stimulus in order to measure the fractional response
of the population that makes some decision. In this example, there will inevitably be some
variation in the quantity of signaling factor to which these independent populations are exposed
due to experimental error. Alternatively, if we consider an in vivo scenario in which hormones or
cytokines are distributed to the various tissues of an organism, we know that these molecules are
themselves produced by other cells. Since cytokine production is a stochastic process, the amount
of signal to which specific cells within a tissue are exposed will be a variable quantity.

To confirm that the existence of variability in the signal does in fact produce optimal
population-level channel capacity at non-trivial levels of single-cell noise, we introduced another
noise term (the signal noise, εs, as opposed to the original response noise, ε) governing the limit of
signal accuracy for our populations of simulated cells. As an example, consider signal noise equal
to 1% of the signal value that produces an average response corresponding to the decision-making
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Figure S13: Increasing the number of sampled signal values in the transition zone of the individual cell’s
dose-response curve (i.e. independently of the population dose-response transition zone) results in a decrease
in optimal noise level and an increase in channel capacity which appears to approach some limit.

threshold. This alternate form of the model (modified from Equation 2) has the following form:

R = (Rmax −Rmin) · (S + εs)
n

(S + εs)
n +Kn

+Rmin + ε

where the signal noise term εs is normally distributed and is sampled independently for each
population of cells: εs ∼ N (0, σ). This procedure simulates the previously discussed example of
the experimentalist’s exposure of signal to multiple cellular populations, and it is distinct from
the application of the original noise term, ε, that was applied to each individual cell. We then
calculated the population-level channel capacity for data sets in which the population-level
transition zone is fixed, by altering the signal space density so that the responses corresponding to
these signals fall between 10% and 90% of the maximal population response. Using this data, we
characterized the impact of signal detection limits on the population-level channel capacity with
respect to different levels of ε (Figure S14). As expected, we see that slight error in the signals to
which the populations are exposed reduces the population-level channel capacity at low levels of
response noise. Thus, although very small levels of single cell noise co uld theoretically produce
high population-level channel capacity, the presence of signal variability in physically realistic
systems requires higher levels of noise, so that signal values can be spaced at reasonable distances
from one another while maintaining low variability in the population-level response.
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Figure S14: Implementing a limit on signal resolution in the form of a fixed level of signal noise (εs) results
in a positive correlation between noise level and channel capacity on the population level. In this figure εs is
one percent of the signal value corresponding to the decision-making response threshold. We also note that
this data exhibits a population-level C < 1 bit when the single-cell noise is 0, and that this differs from the
data in the main text and Figure S13. This results from the presence of relatively high signal noise given
the sharp transition region that occurs in the population response with negligible single cell (response) noise
(Figure S12) as compared to the lack of signal noise in other mentioned data sets.
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